A Key Ecological Trait Drove the Evolution of Biparental Care and Monogamy in an Amphibian

1. Department of Biology, East Carolina University, Greenville, North Carolina 27858; 2. La Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima, Peru

Submitted August 12, 2009; Accepted November 20, 2009; Electronically published February 24, 2010

Online enhancements: appendix figures, zip file. Dryad data: http://hdl.handle.net/10255/dryad.1093

Abstract: Linking specific ecological factors to the evolution of parental care pattern and mating system is a difficult task of key importance. We provide evidence from comparative analyses that an ecological factor (breeding pool size) is associated with the evolution of parental care across all frogs. We further show that the most intensive form of parental care (trophic egg feeding) evolved in concert with the use of small pools for tadpole deposition and that egg feeding was associated with the evolution of biparental care. Previous research on two Peruvian poison frogs (Ranitomeya imitator and Ranitomeya variabilis) revealed similar life histories, with the exception of breeding pool size. This key ecological difference led to divergence in parental care patterns and mating systems. We present ecological field experiments that demonstrate that biparental care is essential to tadpole survival in small (but not large) pools. Field observations demonstrate social monogamy in R. imitator, the species that uses small pools. Molecular analyses demonstrate genetic monogamy in R. imitator, the first example of genetic monogamy in an amphibian. In total, this evidence constitutes the most complete documentation to date that a single ecological factor drove the evolution of biparental care and genetic and social monogamy in an animal.

Keywords: parental care, mating systems, sexual selection, frogs, Dendrobatidae, Ranitomeya.

Introduction

The relationship between the form of parental care and the mating system within a species is an issue of fundamental importance to the study of animal breeding systems (Trivers 1972; Clutton-Brock 1991; Arnold and Duvall 1994). Despite decades of research, the specific ecological factors that drive the evolution of parental care remain a subject of debate, particularly in the case of vertebrates (e.g., Burley and Johnson 2002; Wesolowski 2004).

In turn, the form of parental care is thought to have an important influence on the evolution of mating systems in general (Trivers 1972; Kokko and Jennions 2008) and monogamy in particular, but the details of these relationships are still debated (Reichard and Boesch 2003). Furthermore, the recent explosion in genetic analyses of mating systems has revealed that monogamy (with both social and genetic mate fidelity) is a rare phenomenon (Jennions and Petrie 2000; Westneat and Stuart 2003).

One long-standing hypothesis posits that when biparental care becomes crucial to offspring survival, this can favor the evolution of monogamy, since both members of a pair may receive higher reproductive returns by investing in mutual offspring rather than seeking extrapair reproductive opportunities (Kleiman 1977; Wittenberger and Tilson 1980). Research on a variety of monogamous species has produced evidence consistent with this hypothesis (e.g., Gubernick and Teferi 2000; Reichard and Boesch 2003). Nevertheless, it has proven difficult to identify specific ecological factors that drove the evolution of biparental care and monogamy in concert in particular species compared with closely related species that are promiscuous.

In this study, we use comparative, experimental, and genetic approaches to investigate the evolution of parental care and mating strategies in an ecological context in anurans. Frogs, with a diversity of reproductive modes and breeding habitats, offer unique opportunities to investigate the influence of specific ecological and social factors on reproductive strategies (Summers et al. 2006, 2007; Wells 2007). Many frogs reproduce away from large bodies of water, a trend likely driven by predation on eggs and larvae (Crump 1974; Duellman and Trueb 1986; Magnusson and Hero 1991). Moving away from these large water bodies entailed a trade-off: predation was reduced, but environmental “harshness” (Wilson 1971) increased for eggs and larvae, especially in terms of increased desiccation risk.
(Touchon and Warkentin 2008). This trend of avoiding oviposition in large bodies of water likely selected for parental care in order to ameliorate the increased harshness of the terrestrial environment (McDiarmid 1978; Bickford 2004). Some species of tropical frogs evolved the habit of placing their offspring in small pools, such as phytotelmata (e.g., water-filled leaf axils), and the use of these small pools may have driven the evolution of more intensive parental care, such as trophic egg feeding (Weygoldt 1987). In turn, consistent feeding of offspring may have favored the evolution of biparental care (Summers and Earn 1999). This hypothetical sequence of events is logical, and elements of the sequence have appeared repeatedly in the scientific literature. Nevertheless, these elements have not been tested in any rigorous way. Here we present tests of the major links in this chain of logic, using phylogenetic comparative analyses.

Traditionally, research on biparental care has focused on birds and mammals, and the general assumption is that maternal care is primitive and, hence, that the evolution of male parental care plays a critical role in the evolution of biparental care and monogamy (Kleiman 1977; Richardson and Boesch 2003). In frogs, male parental care is typically primitive, so it is the evolution of maternal care that is critical to the evolution of biparental care (Summers and Earn 1999; Summers et al. 2006).

To investigate the effect of breeding pool size on patterns of parental care and mating strategies in more detail, we carried out research on two species of Peruvian poison frogs, Ranitomeya imitator (the mimic poison frog) and Ranitomeya variabilis (the variable poison frog). Both of these species were formerly in the genus Dendrobates (for details, see Grant et al. 2006). By comparing two closely related species of frogs whose breeding systems differ with respect to a single major ecological variable, we were able to focus on the effect of breeding pool size on parental care and mating system evolution.

Previous research on these species demonstrated that R. variabilis deposited their tadpoles in pools that averaged 112 mL in volume, compared with 24 mL for R. imitator (Brown et al. 2008b). Field experiments demonstrated that R. imitator preferred to use extremely small pools, whereas R. variabilis preferred large pools (Brown et al. 2008a). These species also evolved differences in space use, territorial defense, parental care, mating strategies, and larval ecology in association with the use of different pool sizes (Brown et al. 2008a, 2008b, 2009b, 2009c). Ranitomeya imitator showed biparental care, in which the male and the female cooperated over long periods (months) to care for offspring, regularly feeding tadpoles with trophic eggs (Brown et al. 2008b; fig. 1). In contrast, R. variabilis showed uniparental male care: females did not participate in care, and tadpoles were not fed (Brown et al. 2008b, 2009c).

In this article, we investigate the hypothesis that a transition to the use of very small breeding pools (i.e., small phytotelmata) drove the evolution of biparental care. A key prediction of this hypothesis is that small phytotelmata contain insufficient nutrients for tadpole growth and survival, producing the need for trophic eggs. In order to test this prediction, we carried out a series of reciprocal transplant experiments in the field.

In frogs, as in other taxa, the evolution of biparental care may favor the evolution of monogamy (Caldwell 1997; Bourne et al. 2001). Previous research on R. imitator showed pair bonding and social monogamy: members of pairs exhibited regular affiliative interactions (e.g., tactile courtship) over long periods (months), pair member home ranges were tightly overlapping, and both members aggressively defended territory boundaries against conspecífics and heterospecífics (Brown et al. 2008b, 2009b). In contrast, R. variabilis had a highly promiscuous mating system, with frequent partner switching (Brown et al. 2008b). Home ranges were not exclusive, and neither territorial boundaries nor pools were defended (Brown et al. 2008b, 2009b).

Here we investigate the hypothesis that the evolution of biparental care in association with small breeding pool size led to the evolution of genetic monogamy, in addition to social monogamy. To test for genetic monogamy, we made long-term observations on families of R. imitator and carried out molecular genetic analyses of relatedness on all socially pair-bonded adults and their putative offspring.

Our broad comparative analyses are carried out on a much larger scale than our experimental and genetic analyses both in terms of phylogenetic scope (i.e., across the order Anura vs. two closely related species) and in terms of the range of reproductive resources (comparing across lakes, ponds, streams, small pools, and phytotelmata vs. two types of small phytotelmata). Figure 2 presents these different scales and their connections in a graphical format.

Methods

Comparative Analyses

We used data from 404 frog species distributed across the entire order Anura and maximum likelihood reconstruction of the evolution of these binary characters to test for a correlation between evolutionary transitions to phytotelma breeding and to parental care. We summarized data on parental care, breeding site, and egg feeding from the scientific literature (Dryad data [http://hdl.handle.net/10255/dryad.1093]; Breeding Site Refs, Supertree [Nexus], PhytoEvol, and PCEvol are available in a zip file in the
Figure 1: Biparental care in *Ranitomeya imitator*. The male leads a female to a deposition site within their territory. The female will then oviposit one to four eggs on the surface of a leaf, away from water. A. A week after oviposition, the male returns and retrieves its tadpoles, breaking the tadpole free from the egg sack and allowing the tadpole to wriggle onto its back. B. The male then deposits the tadpole in an unoccupied pool of water within the pair’s territory. The male will then survey the pool every couple of days and determine when the tadpole is fed trophic egg(s). C. To initiate egg feeding, the male begins to call from the surface of the pool, and after a short period, the tadpole’s mother arrives. D. After an extended bout of calling, eventually the female will dive into the pool and deposit a trophic food egg (depicted in white within the center of the plant; female is within the pool). This behavior is repeated on average every 7.3 days throughout the duration of development of the tadpole. Images B–D are the property of the BBC Natural History Unit.

online edition of the *American Naturalist*). We focused on species for which we could obtain reliable information on patterns of parental care and breeding site and that we could also place in a phylogenetic context with reasonable confidence. The topology of the phylogenetic tree used for our comparative analyses was a supertree constructed in a hierarchical manner (Summers et al. 2006). Basal relationships in the order Anura were based on a recently published phylogeny of the Amphibia (fig. S1 in Santos et al. 2009). Lower-level relationships were based on a less recent but more comprehensive phylogeny of the Amphibia (Frost et al. 2006). Lower-level relationships that were not resolved in these trees were resolved on the basis of a previously published phylogenetic supertree, constructed from numerous published phylogenetic analyses and developed for comparative analyses of the evolution of parental care and egg size in frogs (Summers et al. 2006, 2007). The final tree is provided in Nexus format and in graphical format (Supertree [Nexus], PhytoEvol, PCEvol, available in a zip file in the online edition of the *American Naturalist*). For alpha taxonomy, we used the online resource Amphibian Species of the World (Frost 2009).

We tested associations between characters by using maximum likelihood models (continuous-time Markov models) for the analysis of correlations between discrete characters across an evolutionary tree (Pagel 1994), implemented in the Discrete module in the BayesTraits suite of programs developed by M. Pagel and A. Meade (http://www.evolution.rdg.ac.uk). Each trait used in a comparative analysis (phytotelm breeding, parental care, egg feeding, biparental care) was coded as a discrete character: yes = 1, no = 0. In the Discrete module of BayesTraits, we used the maximum likelihood algorithm to estimate character state changes on our evolutionary tree and compared the likelihood of a model that assumed the independent evolution of the two binary characters being compared (e.g., breeding site and presence/absence of parental care) with that of a model that allowed for correlated evolution between these characters.

Statistical comparisons were implemented with likeli-
Figure 2: Different scales of this study. Comparative analyses were carried out on a much larger scale than our experimental and genetic analyses both in terms of phylogenetic scope (A; looking at the order Anura vs. two closely related species in the genus Ranitomeya, family Dendrobatidae) and in the context of type of reproductive resources (B; comparing all sizes of reproductive resources being used vs. two small phytotelmata). In general, species that utilize larger bodies of water exhibit lower levels of parental care. See “Results” for comparative analyses.

hood ratio tests, in which 2 times the difference between the log likelihoods of the models was compared with a χ^2 distribution. The degrees of freedom were determined by the difference in the number of parameters being estimated under each model, which in our comparisons was four. Estimates of instantaneous transition rates under a continuous-time Markov model for the analysis of the correlation between breeding site and parental care were also carried out with the Discrete module in BayesTraits. To test the relative likelihoods of alternative pathways, we restricted the two pathways being compared to be equal and reran the maximum likelihood analysis. We then compared the likelihoods of the two dependent models (restricted and unrestricted), using a likelihood ratio test as described above (with df = 1).

We also tested for evolutionary correlations between pairs of traits using the concentrated changes test (Maddison 1990) as implemented in the MacClade program (Maddison and Maddison 2003). In the concentrated changes test, one trait was considered to be the independent variable (e.g., phytotelm breeding), and one was considered to be the dependent variable (e.g., parental care). As a first step, the evolution of the independent trait was reconstructed on the phylogenetic tree, using parsimony (PhytoEvol, PCEvol, available in a zip file in the online edition of the American Naturalist). The test used the distribution of the independent variable on the tree to test the hypothesis that the evolution of the dependent variable is significantly associated with the presence (i.e., prior evolution of) the independent variable. The size of the trees involved made it necessary to use simulations to determine the significance of the results (rather than exhaustively
evaluating all possibilities). For the simulations, 1,000 replicates were employed, using the Minstate method of optimization for character reconstruction under parsimony. We assumed that phytotelm breeding and egg feeding were derived in the analyses where these were the dependent traits (respectively).

Reciprocal Transplant Experiments
To test the importance of biparental care to offspring survival in Ranitomeya imitator, we used five treatments in which the tadpoles of each species were placed in natural phytotelmata and allowed to consume the resources within the pools. Tadpoles of both species were placed in larger pools (normally used by Ranitomeya variabilis) and in smaller pools (normally used by R. imitator). A control treatment contained R. imitator tadpoles in small pools: tadpoles were removed and replaced in the same pool (and hence continued to receive trophic eggs).

Tadpoles of R. imitator and R. variabilis (Gosner stages 22–25) were placed within pools formed in a total length of Aechmea bromeliad (n = 8 and n = 10, respectively) and pools within the leaf axils of a species of Heliconia (n = 10 and n = 8, respectively). Aechmea bromeliads are frequently used by R. variabilis for egg and tadpole deposition, whereas Heliconia are used exclusively by R. imitator (Brown et al. 2008b). A coarse mesh was placed above the surface of the pool, preventing frogs and large insects from entering or from ovipositing.

The fifth (control) treatment consisted of R. imitator tadpoles (n = 9) in the leaf axils of Heliconia sp. (as in the two treatments described above). These tadpoles were removed and then replaced in the same pool. For the duration of this experiment, the tadpoles in this treatment continued to receive trophic eggs from their parents.

Pools were surveyed weekly, and filtered rain water was used to maintain the water levels during the experiments. The tadpoles were weighed and measured (total length, body width, body length) at the start and end of the experiments (after 21 days). Three R. imitator and four R. variabilis tadpoles in Heliconia pools that were not fed died before the end of the experiment.

The mean volume of water ± SD in the Aechmea treatment pools was 39.28 ± 6.64 mL (range 20–55 mL, n = 18). The pools in Heliconia sp. were frequently used by R. imitator for tadpole deposition but were not used by R. variabilis (Brown et al. 2008b). The mean volume of water in the Heliconia treatment pools was 17.3 ± 6.64 mL (range 8–28 mL, n = 27). There were no significant differences in Heliconia pool sizes between treatments (P = .320, χ² = 2.276, df = 2) or Aechmea pool sizes between treatments (P = .695, z = −0.392, n = 17). The Heliconia treatment pools were significantly smaller than the Aechmea treatment pools (P < .001, z = −4.801, n = 45).

The differences between the final measurement and initial measurements were divided by the initial measurement to standardize the growth rates. Both mass and total length measurements were highly correlated (P < .001, PC = 0.892, n = 76); thus, we present data only on total length. Because of unbalanced sampled sizes, Kruskal-Wallis and Mann-Whitney tests were used to compare means. Ryan-Einot-Gabriel-Welsch (REGWQ) post hoc tests were performed for pairwise comparisons between treatments.

Genetic Relatedness
We tested for genetic monogamy in R. imitator by identifying putatively monogamous breeding pairs, observing them for several months, and collecting tissue from them and from all the tadpoles they fed during the observation period and from neighboring individuals.

Data on individual behavior and associations were obtained from transect surveys of marked individuals in quadrats demarcated with flags. For a detailed explanation of transect methods, see Brown et al. (2008b, 2009b, 2009c). Briefly, between May 19, 2005, and December 1, 2008, we walked transects (n = 239) and observed 28 paired R. imitator (defined by mutual participation in courtship and parental care) for a total of 3,445 min. In 12 pairs, we were able to collect tissues from both adults and observe the females in these pairs repeatedly feeding at least two tadpoles. We also collected tissues from other individuals and tadpoles from the same populations (particularly from adults captured in areas surrounding the territories of the putatively monogamous pairs and from tadpoles of all phytotelmata surrounding and within each pair’s territory).

We then genotyped all the tissues collected, including the 12 putatively monogamous pairs and nearby individuals (total n = 110), using six polymorphic microsatellite markers (DimiD04, DimiB07, DimiE03, DimiE02, DimiB02, and DimiC05) specifically designed for R. imitator (Brown et al. 2009a). To ensure accuracy of our microsatellite results, each locus was run twice for every individual. If the results were not the same, individuals were run a third time.

Relatedness between specific individuals (e.g., putative father-offspring pairs) and averages for classes of comparisons (e.g., all father-offspring comparisons) were calculated with maximum likelihood algorithms implemented in the program Kinship (ver. 1.3.1; Goodnight and Queller 1999). Family relatedness was calculated by taking the mean relatedness of male-offspring, female-offspring, and offspring-offspring for each family. The statistical significance of the level of relatedness between putative
Results

Discrete Trait Evolution

We estimated instantaneous rates of evolutionary change between character states for all four possible pairs of two traits, each with two possible states: terrestrial water body breeding (abbreviated as pond breeding, although this term includes other large terrestrial water bodies, such as streams) or phytotelm breeding; no parental care or parental care. A likelihood ratio test demonstrated a highly significant ($P < .0001$) correlation between the evolution of phytotelm breeding and parental care. The transition rate from pond breeding without parental care to phytotelm breeding without parental care was estimated as approximately twice that of the transition to pond breeding with parental care (fig. 3), but this difference was not statistically significant. In contrast, the transition rate from phytotelm breeding without parental care to phytotelm breeding with parental care was significantly higher ($P < .05$) than from pond breeding with parental care to phytotelm breeding with parental care (table 1). Overall, our analysis indicates that the most likely evolutionary pathway from ancestral pond-breeding, noncaring species to phytotelm-breeding species with parental care was typically from pond breeding to phytotelm breeding, followed by the evolution of parental care (fig. 3).

Because this method requires the characterization of parental care as a binary character (presence/absence), it actually underestimates the effect of the transition to phytotelm breeding on the evolution of parental care. In several cases, although the evolution of some parental care preceded the evolution of phytotelm breeding, the evolution of phytotelm breeding then drove the evolution of higher levels of parental care (e.g., dendrobatid frogs; Summers and McKeon 2004). A test of the evolutionary correlation between phytotelm breeding and trophic egg feeding was also highly significant. A third test revealed a highly significant association between the evolution of trophic egg feeding and biparental care (table 1).

Concentrated Changes Test

Using the concentrated changes test (Maddison 1990), we found that the relationship between the evolution of phytotelm breeding (assumed to be the independent variable) and parental care (assumed to be the dependent variable) across all frogs was highly significant ($P < .003$); clades that evolved phytotelm breeding were likely to evolve parental care, relative to taxa without phytotelm breeding. A second test revealed that phytotelm breeders are significantly more likely ($P < .0001$) to have egg feeding. Finally, a third test revealed that the evolution of egg feeding is significantly ($P < .0001$) associated with the evolution of biparental care (fig. 4). PhytoEvol and PCEvol (available in a zip file in the online edition of the *American Naturalist*) show the reconstruction (via parsimony) of phytotelm breeding and parental care evolution on the phylogenetic supertree.

Hence two different methods of comparative analysis, carried out on data from species distributed across the order Anura, support the claim that the evolution of phytotelm breeding is associated with the evolution of parental care in general and with the evolution of more intensive forms of parental care (egg feeding). Furthermore, the evolution of egg feeding is associated with the evolution of biparental care.
Tadpole growth was significantly different between treatments ($P < .001$, $\chi^2 = 26.868$, df = 4). Individuals of both species placed in small pools (with no egg feeding) grew at significantly slower rates than those placed in larger pools (fig. 5). Four (of eight) *Ranitomeya variabilis* tadpoles and three (of 10) *R. imitator* tadpoles and three (of 10) *Ranitomeya imitator* placed in small pools (with no egg feeding) died before the end of the experiment. We observed no mortality in any of the other treatments. These results demonstrate that small phytotelmata contain insufficient nutrients for the growth and survival of tadpoles from either species. In contrast, large phytotelmata contain sufficient nutrients to support the growth and survival of either species without egg feeding (fig. 5). Thus, a complete transition to small pool use favored the evolution of biparental care from uniparental male care.

Genetic Analysis of Monogamy

Maximum likelihood estimates of average relatedness and pairwise relatedness (Goodnight and Queller 1999) between the parents and their putative offspring were consistent with complete monogamy (behavioral and genetic) for 11 out of 12 families (fig. A1 in the online edition of the *American Naturalist*). In these 11 families, average relatedness was estimated as 0.534 ± 0.153 between fathers and their putative offspring ($n = 40$), 0.538 ± 0.157 between mothers and their putative offspring ($n = 40$), and 0.641 ± 0.244 between putative siblings ($n = 78$). In contrast, average relatedness was estimated as -0.030 ± 0.235 between putatively unrelated individuals (all other individuals in the population) and offspring ($n = 2,089$).

For the individual comparisons, 40 out of 40 father-offspring comparisons, 37 out of 40 mother-offspring comparisons, and 73 out of 78 offspring-offspring comparisons showed significant evidence of relatedness at the 0.5 level. In those few cases where the evidence for relatedness at the 0.5 level was not statistically significant, the point estimates were still consistent with a relatedness of 0.5. The twelfth pair, however, showed a clear pattern of polygyny, in which three clutches of embryos deposited over 2 months showed mixed maternity between two resident females (fig. A2 in the online edition of the *American Naturalist*).

While we were unable to carry out equivalent genetic analyses of parentage in *R. variabilis* (because of the difficulty of connecting individual adults to specific pools and offspring), a comparison of pairwise relatedness between tadpoles and younger larvae associated with the same pool indicated a wide range of relatedness, consistent with our observations of high levels of promiscuity (Brown et al. 2008b, 2009c).

Discussion

The ecological and social factors influencing the evolution of parental care have been the subject of contention for decades (Trivers 1972; Maynard Smith 1977; Westneat and Sherman 1993). Debates concerning this issue continue (e.g., Burley and Johnson 2002; Wesołowski 2004). It has proven difficult to connect specific ecological or social variables to the evolution of parental care (e.g., Ah-King.
et al. 2005), although progress has been made in some taxa (e.g., Gonzalez-Voyer et al. 2008).

Using comparative analyses across the order Anura, we have provided evidence that the evolution of phytotelm breeding drove the evolution of parental care, including a particularly intensive form of parental care (trophic egg feeding). In turn, the evolution of trophic egg feeding is associated with the evolution of biparental care.

Our previous research on *Ranitomeya imitator* and *Ranitomeya variabilis* revealed that these two species provide a unique opportunity to investigate the effect of ecology on the evolution of parental care and mating systems (Brown et al. 2008a, 2008b, 2009b, 2009c). These species show a major ecological difference associated with breeding strategy: they use breeding pools that differ substantially in size (Brown et al. 2008b). A key prediction of the hypothesis that this difference in pool size drove the evolution of egg feeding and biparental care is that the small pools used by *R. imitator* will not support tadpole growth and development unless trophic egg feeding is provided. The results of our reciprocal transplant experiments confirm this prediction.

Theoretically, we expect the evolution of biparental care to lead (in some cases) to the evolution of social and genetic monogamy, since the mutual dependence required for parents to provide the investment necessary to successfully produce offspring can favor mutual commitment and fidelity (Kleiman 1977; Wittenberger and Tilson 1980). However, this prediction has been difficult to test empirically.

Our long-term behavioral observations on *R. imitator* revealed pair bonding and strict social monogamy in this species, in contrast to *R. variabilis*, which is highly promiscuous (Brown et al. 2008b). Previous research on the sister species of *R. imitator*, *Ranitomeya vanzolinii*, demonstrated that this species also has pair bonding and social monogamy (also in association with the use of very small breeding pools [Caldwell 1997; Caldwell and de Oliveira 1999]). However, these studies did not address the issue of genetic monogamy. In fact, genetic monogamy has not been demonstrated in any species of amphibian. In one species (of salamander) where social monogamy had been demonstrated, genetic analyses of relatedness demon-

Figure 4: Mirror tree including only those species with egg feeding and one closely related taxon, illustrating the concentrated changes test of an association between egg feeding and biparental care (see Dryad data [http://hdl.handle.net/10255/dryad.1093]; Breeding Site Refs, Supertree [Nexus], PhytoEvol, and PCEvol are available in a zip file in the online edition of the *American Naturalist*).
strated that the genetic mating system was highly promiscuous (Liebgold et al. 2006).

Our microsatellite analyses reveal the first example of genetic monogamy in an amphibian. Eleven out of the 12 pairs we investigated showed genetic as well as social monogamy. In one case, social monogamy did not correlate with genetic monogamy, in that the male was found to have mated with another female that resided near the territory of the putatively monogamous pair. It is not clear whether the primary female was aware of the extrapair mating carried out by her mate, since neither she nor her social mate was observed to interact with the secondary female. Although genetic monogamy appears to be the “rule” in *R. imitator*, these results are based on a small sample of families, and the prevalence of extrapair mating warrants additional study.

Previously, we have shown that the biparental care hypothesis for the evolution of social monogamy is consistent with the results of ecological and behavioral research on *R. imitator*, whereas other hypotheses are not (Brown et al. 2008b). Some authors have stressed the distinction between the mate-guarding hypothesis and the biparental care hypothesis as alternatives to explain the evolution of monogamy (Matthews 2003). In the case of *R. imitator*, at least some males apparently can profit from polygyny, and mate guarding by females appears to occur (and has been observed in captivity). Hence, mate guarding is likely to be important in this system, yet it is unlikely to provide a sufficient explanation for monogamy. Intense mate guarding by females occurs in at least two species of poison frogs (*Dendrobates auratus* and *Dendrobates leucomelas*) with uniparental male care, and yet this has not resulted in monogamy (Summers 1989, 1992a, 1992b). Thus, it is the importance of biparental care to offspring survival that is likely the key factor driving the evolution of monogamy in *R. imitator*.

In summary, we have provided comparative, observational, experimental, and molecular genetic evidence for an evolutionary chain of causation linking change in a specific ecological factor (breeding pool size) to evolutionary changes in parental care and mating system, culminating in biparental care and social and genetic monogamy. It is likely that patterns of parental care and mating strategies coevolved in response to changes in pool availability in *R. imitator*.

As pointed out in “Introduction,” our results span two different scales of analysis (fig. 2). Our comparative analysis addressed evolutionary correlations, but the mechanisms that connect pool size to parental care and mating system across species remain to be investigated in detail. Our experimental and genetic analyses clarify these mechanisms within phytotelm-breeding poison frogs by comparing two closely related species that differ in breeding...
pool size, but it would be useful to replicate these results across multiple taxa in a phylogenetic context.

Similar ecological shifts to nutrient-poor “nurseries” may have led to similar evolutionary transitions in other lineages of frogs (e.g., *Anomaloglossus beebei*, Bourne et al. 2001) and more distantly related taxa (e.g., cockroaches: Bell et al. 2007), but further investigation is required to test this hypothesis.

Acknowledgments

We thank B. Crespi, J. McKinnon, S. McRae, and E. Twomey for suggestions on early drafts of this article. We are grateful to C. Aguilar, J. Cordova, and K. Siu Ting for their help at the Museo de Historia Natural, San Marcos, Peru, and K. Ramirez for help at the Ministry of Natural Resources (INRENA). This research was funded by grants from the National Science Foundation (1067-2007-INRENA-IIFS-DCB, and 005-2008-INRENA-IIFS-DCB). J.L.B. and K.S. designed research; J.L.B. performed field research; V.M. provided critical input and helped with research permits; J.L.B. and K.S. analyzed data; J.L.B., V.M., and K.S. wrote the article.

Literature Cited

Associate Editor: Lynne D. Houck
Editor: Mark A. McPeek

Left, Ranitomeya imitator, a species of poison frog that uses tiny pools for tadpole deposition and exhibits biparental care (where the female feeds tadpoles food eggs) and monogamy. Right, Ranitomeya variabilis, a species of poison frog that uses larger pools for tadpole deposition and does not exhibit biparental care or monogamy. Photographs by Jason L. Brown.