Early tetrapod relationships revisited

MARCELLO RUTA¹*, MICHAEL I. COATES¹
and DONALD L. J. QUICKE²

¹ The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA (mruta@midway.uchicago.edu; mcoates@midway.uchicago.edu)
² Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK (d.quicke@ic.ac.uk)

(Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002)

ABSTRACT

In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relationships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria crassidisca and Pholiderpeton scutigerum collapsed in a trichotomy with a clade formed by Anthracosaurus russelli and Pholiderpeton attheyi; (3) the internal relationships of derived dissorophoids, with four amphibamid species forming an unresolved node with a clade consisting of micromelerpetontids and branchiosaurids and a clade consisting of albanerpetontids plus basal crown-group lissamphibians; (4) the position of albenerpetontids and Eocaecilia micropoda, which form an unresolved node with a trichotomy subtending Karaurus sharovi, Valdotriton gracilis and Triadobatrachus massinoti; (5) the branching pattern of derived diplocaulid nectrideans, with Batrachiderpeton reticulatum and Diceratosaurus brevirostris collapsed in a trichotomy with a clade formed by Diploceraspis burkei and Diplocaulus magnicornis. The results of the original parsimony run – as well as those retrieved from several other treatments of the data set (e.g. exclusion of postcranial and lower jaw data; character reweighting; reverse weighting) – indicate a deep split of early tetrapods between lissamphibian- and amniote-related taxa. Colosteids, Crassigyrinus, Whatcheeria and baphetids are progressively more crownward stem-tetrapods. Caerorhachis, embolomeres, gephyrostegids, Solenodonsaurus and seymouriamorphs are progressively more crownward stem-amniotes. Eucritta is basal to temnospondyls, with crown-lissamphibians nested within dissorophoids. Westlothiana is basal to Lepospondyli, but evidence for the monophyletic status of the latter is weak. Westlothiana and Lepospondyli form the sister group to diadectomorphs and crown-group amniotes. Tucitanomorph and microbrachomorph microsaurs are successively more closely related to a clade including proximodistally: (1) lysorophids; (2) Acherontiscus as sister taxon to adelospondyls; (3) scincosaurids plus diplocaulids; (4) urocordylids plus aı¨stopods. A data set employing cranial characters only places microsaurs on the amniote stem, but forces remaining lepospondyls to appear as sister group to colosteids on the tetrapod stem in several trees. This arrangement is not significantly worse than the tree topology obtained from the analysis of the complete data set. The pattern of sister group relationships in the crownward part of the temnospondyl-lissamphibian tree re-emphasizes the important role of dissorophoids in the lissamphibian origin debate. However, no specific dissorophoid can be identified as the immediate sister taxon to crown-group lissamphibians. The branching sequence of various stem-group amniotes reveals a coherent set of internested character-state changes related to the acquisition of progressively more terrestrial habits in several Permo-Carboniferous forms.

Key words: amniotes, characters, congruence, lissamphibians, parsimony ratchet, taxon exemplar, tetrapods, total-group.

* Author for correspondence.
CONTENTS

I. Introduction ... 253
II. Conflicting cladogram topologies ... 255
III. Historical background ... 257
IV. Taxonomic definitions ... 259
V. Taxon exemplars ... 261
(1) Devonian and Lower Carboniferous taxa ... 261
 (a) Taxonomic sample ... 261
 (b) Remarks .. 262
(2) Acherontiscidae .. 262
 (a) Taxonomic sample ... 262
 (b) Remarks .. 262
(3) Adelospondyli .. 262
 (a) Taxonomic sample ... 262
 (b) Remarks .. 262
(4) Aistopoda .. 263
 (a) Taxonomic sample ... 263
 (b) Remarks .. 263
(5) Baphetidae .. 263
 (a) Taxonomic sample ... 263
 (b) Remarks .. 263
(6) Colosteidae .. 263
 (a) Taxonomic sample ... 263
 (b) Remarks .. 263
(7) Diadectomorpha ... 264
 (a) Taxonomic sample ... 264
 (b) Remarks .. 264
(8) Embolomeri and Eoherpetontidae .. 264
 (a) Taxonomic sample ... 264
 (b) Remarks .. 264
(9) Gephyrostegidae .. 265
 (a) Taxonomic sample ... 265
 (b) Remarks .. 265
(10) Lysorophia ... 265
 (a) Taxonomic sample ... 265
 (b) Remarks .. 265
(11) Microsauria .. 265
 (a) Taxonomic sample ... 265
 (b) Remarks .. 266
(12) Nectridea .. 266
 (a) Taxonomic sample ... 266
 (b) Remarks .. 266
(13) Seymouriamorpha ... 268
 (a) Taxonomic sample ... 268
 (b) Remarks .. 268
(14) Temnospondyli ... 268
 (a) Taxonomic sample ... 268
 (b) Remarks .. 268
(15) Crown-group Lissamphibia ... 269
(16) Crown-group Amniota .. 270
(17) Outgroups .. 270
VI. Characters .. 270
VII. Analysis ... 270
 (1) Character coding ... 270
 (2) The parsimony 'ratchet' ... 271
I. INTRODUCTION

This paper presents a new, detailed cladistic analysis of early tetrapods as part of an ongoing project aiming to discover sources of conflict between the most widely discussed, published tetrapod phylogenies and to search for correlated character transformations in early tetrapod evolution. A long-term goal of our investigation is to generate and test new hypotheses of relationships using, as far as possible, exhaustive taxon and character combinations not considered in previous studies. Primitive tetrapod interrelationships are a topic of considerable palaeontological and biological interest. Our knowledge of this subject has improved considerably during the last two decades (see Sections II and III). Significant fossil discoveries have cast new light on the pattern of anatomical transformations that occurred at the vertebrate transition from water to land (e.g. Jarvik, 1980, 1996; Clack, 1989, 1994b; Smithson, 1985; Panchen, 1985; Smithson & Panchen, 1987, 1988, 1990; Clack, 1996), and descriptions of several new taxa are beginning to bridge the morphological and/or stratigraphical gap between Devonian and Carboniferous faunas (e.g. Clack, 1998a, 2001, 2002; Lombard & Bolt, 1995; Thulborn et al., 1996; Clack & Finney, 1997; Paton, Smithson & Clack, 1999; see also Bolt & Lombard, 2000; Clack & Carroll, 2000, and Ruta, Milner & Coates, 2001, for a review). As in the case of other areas of palaeobiology, early tetrapod studies have benefitted from interactions between classical morphology and modern embryology at the interface between evolution and development (e.g. Shubin & Alberch, 1986; Coates, 1991, 1995, 1996; Thorogood, 1991; Duboule, 1994; Shubin, 1995; Sordino & Duboule, 1995; Sordino, van der Hoeven & Duboule, 1995; Tickle, 1995; Cohn et al., 1997; Shubin, Tabin & Carroll, 1997; Coates & Cohn, 1998; Jeffery, 2001). Recently, much interest has centered on comparisons between morphological and molecular analyses, on fossil-based calibrations of molecular clocks, and on the timing of such key events as the phylogenetic split between lissamphibians and amniotes (e.g. Feller & Hedges, 1998; Kumar & Hedges, 1998; Hedges, 2001; Van Tuinen, Porder & Hadly, 2001; Ruta & Coates, in press). Reconstructing the branching sequence of early tetrapods is a necessary prerequisite to inform a wide range of questions, such as: (1) understanding the anatomical, physiological and ecological modifications that accompanied the transition from fish ancestors to four-legged vertebrates; (2) establishing the sequence of character acquisitions that

(3) Results ... 271
 (a) The tetrapod stem-group .. 275
 (b) The lissamphibian stem-group ... 277
 (c) The amniote stem-group ... 280
 (d) The affinities of Westlothiana ... 282
 (e) The status of microsaurids .. 283
 (f) The aistopod-nectridean clade ... 283
 (g) Acherontiscus is an adelospondyl ... 284
 (h) The position of lysorophids .. 284
 (4) Reweighted analysis .. 285
 (5) Cranial data ... 287
 (6) Deletion of lower jaw characters ... 288
 (7) Reverse weighting ... 289
 (8) Chronology ... 290

VIII. Future research .. 290
IX. Conclusions .. 292
X. Acknowledgements .. 293
XI. References ... 294
XII. Appendix 1. List of specimens examined .. 304
XIII. Appendix 2. Character list .. 304
XIV. Appendix 3. Data matrix .. 331
shaped the early evolutionary history of lissamphibians and amniotes, from their phylogenetic separation to the diversification of their respective crown-groups; (3) reconstructing the changes in developmental pathways that resulted in new morphologies; (4) formulating and testing hypotheses concerning tempo and mode of evolutionary processes through analysis of character change and degree of character correlation; (5) assessing taxon diversity and morphological disparity through time, as inferred from the shape of cladograms; and (6) providing a framework for comparing and contrasting morphology-based and molecular chronologies of key events in vertebrate evolution. In addition, early tetrapod studies contribute an invaluable source of data for elucidating palaeobiogeographical and palaeoecological patterns in primitive terrestrial biota.

The earliest diversification of lissamphibians and amniotes is the main focus of this review. In addition, conflicting hypotheses of tetrapod interrelationships are compared, with emphasis on the lissamphibian origin debate, on the pattern of character acquisition in the amniote stem-group, and on the status and affinities of various groups of lepospondyls. There is no well-supported, let alone stable, hypothesis of early tetrapod origin debate, on the pattern of character acquisition in the lissamphibian stem-group. Hennig (1965, 1966, 1969) and Patterson, 1993, 1994, for whom plesions are in principle paraphyletic (unless that group is represented by one species only, in which case the need for a higher group name is unnecessary). Generally, only the total group is recognized by formal Linnean rank (Patterson, 1993b; Smith, 1994). Thus, conodonts belong to the Gnathostomata; they are gnathostomes, albeit without jaws’. Following Donoghue et al.’s (2000) example, Eusthenopteron is a tetrapod (more precisely, a stem-group tetrapod), albeit without limbs.

Stem-groups are divided into plesions, which ‘... could be inserted anywhere within the classification without altering the Linnean rank of the crown group’ (Smith, 1994: p. 96). Our use of the plesion concept [a totally extinct monophyletic group; see also Smith (1994)] conforms exclusively to that of Patterson & Rosen (1977), but differs from that of Craske & Jefferies (1989), for whom plesions are in principle paraphyletic assemblages. While Patterson & Rosen’s (1977) concept is based upon the pattern of character acquisition along than to those of L (or A), but which do not belong in the crown group of A (or L), are part of the stem-group of A (or L). The point of latest common ancestry of A and L marks the separation between the total-group of A and the total-group of L. Any fossil organism that belongs in the total-group of A (or L) shares a more recent common ancestor with some or all of the extant members of A (or L) than it does with any extant member of L (or A). If the organism in question is more closely related, in equal measure, to all extant members of A (or L) than to those of L (or A), then it is a member of the stem-group of A (or L), i.e. it branches from the total-group of A (or L) before the basal node marking the beginning of the crown-group radiation. If it is more closely related to some (but not all) extant members of A (or L) than to others, then it is a member of the crown-group of A (or L). The stem-group is an extinct and paraphyletic assemblage by definition.

Crown-group definitions (sometimes referred to as node-based definitions) represent a particular case of nodal or apomorphy-based definitions (in this case, the node subtends the crown-group; Forey, 2001). Apomorphy-based definitions refer to the crown-group and to the portion of the stem-group subtended by the relevant apomorphy. Such a broader monophyletic assemblage corresponds to Craske & Jefferies’s (1989) *scion*. Finally, stem-based definitions are simply total-group definitions (they encompass both the entire stem-group and the crown-group). As clearly stated by Donoghue, Forey & Aldridge (2000: p. 237), ‘... Although crown and total groups can be given separate names (deQueiroz & Gauthier, 1992), this approach results in an unnecessarily expanded classification scheme and in one of the two groups (stem-group) being paraphyletic (unless that group is represented by one species only, in which case the need for a higher group name is unnecessary). Generally, only the total group is recognized by formal Linnean rank (Patterson, 1993b; Smith, 1994). Thus, conodonts belong to the Gnathostomata; they are gnathostomes, albeit without jaws’.
the stem-group, Craske & Jeffries's (1989) concept is formulated within the framework of a more idealistic interpretation of the shape of cladograms, whereby segments of the stem-lineage are also incorporated into the plesions. The distinction between the two plesion concepts revolves around the interpretation of cladograms as (almost) strict representations of phylogenetic trees in Craske & Jeffries (1989) and as formulations of hypotheses of character distributions in Patterson & Rosen (1977).

II. CONFLICTING CLADOGRAM TOPOLOGIES

Published cladistic analyses of early tetrapods show a congruent phylogenetic signal for some groups, such as colosteids and most Devonian forms (Carroll, 1995; Coates, 1996; Laurin & Reisz, 1997, 1999; Ahlberg & Clack, 1998; Clack, 1998a, c, 2001; Laurin 1998a–c; Paton et al., 1999; Anderson, 2001). However, little consensus has emerged for the relationships and affinities of many other groups [e.g. lepospondyls; see Carroll (1995), Carroll & Chorn (1995), Laurin & Reisz (1997, 1999), Laurin (1998a–c), Paton et al. (1999) and Anderson (2001)], despite the discoveries of new data and the introduction of more powerful analytical techniques. This conflict triggered the present work. Visual inspection of current phylogenies reveals two distinct sets of tree topologies (see also Ruta et al., 2001). The first set consists of trees which place most fossil tetrapods either in the stem-lissamphibians (e.g. temnospondyls) or in the stem-amniotes (e.g. embolomeres) (Panchen & Smithson, 1987, 1988; Panchen, 1991; Ahlberg & Milner, 1994; Coates, 1996; Clack, 1998a, c, 2001; Paton et al., 1999). In these short-stemmed trees, operational taxonomic units (OTUs) are arranged mostly dichotomously (Fig. 1A, B). The second set of trees reflects the hypothesis that a greater number of fossil tetrapods traditionally allied to lissamphibians or amniotes show no special relationships to either group (e.g. Laurin & Reisz, 1997, 1999; Ahlberg & Clack, 1998; Laurin, 1998a–c; Anderson, 2001). In these long-stemmed trees (Fig. 1C, D), OTUs form a largely pectinate pattern (unbalanced trees; Smith, 1994). Twelve major groups of early tetrapods are usually recognized (see also below): adelospondyls; aistopods; baphetids; colosteids; diadectomorphs; embolomeres; gephyrostegids; lycospondyls; microsauris; nectrideans; seymouriamorphs; temnospondyls. Fig. 2 shows the percentage distributions of such groups in the tetrapod, lissamphibian and amniote stem-groups, according to various recent studies. For simplicity, these distributions do not take into account several Devonian and Carboniferous genus- and species-level OTUs. The percentage distributions highlight remarkable differences in the number of groups assigned to the lissamphibian and amniote stem-groups. This is especially evident in a comparison of Carroll’s (1995) and our own analyses, in which eight/nine different groups are placed within stem-amniotes, with the Laurin & Reisz (1999) and Anderson’s (2001) analyses, in which most groups are almost equally distributed between the tetrapod stem-group and the lissamphibian stem-group.

Evaluation of conflicting results of published phylogenies is complicated by the use of very different taxon and/or character samples. In several studies, only a small number of OTUs has been considered. These are sometimes represented by supraspecific terminals (e.g. Carroll, 1995), and/or by few genera or species for each major group (e.g. Coates, 1996; Clack, 1998a, c, 2001; Paton et al., 1999). The size of a matrix also depends upon the focus of a particular phylogenetic analysis (e.g. Laurin & Reisz, 1997, 1999; Clack, 1998a, c, 2001; Ahlberg & Clack, 1998; Laurin, 1998a–c; Anderson, 2001). Several theoretical considerations suggest that taxon exemplars should be as diverse as possible (e.g. Nixon & Davis, 1991; deBraga & Rieppel, 1997; Anderson, 2001; Prendini, 2001; see also discussion below). Importantly, a recent study based on simulations of true phylogenies (Salisbury & Kim, 2001) indicates that dense and random taxon sampling increases the probability of retrieving correctly the plesiomorphic condition of characters as well as the ancestral state near the tree root. Furthermore, Salisbury & Kim’s (2001) simulations show that in the analysis of small clades, estimates of ancestral states are strongly affected by cladogram topology and by the number of descendant branches in progressively more distal internal nodes.

Increasing the number of taxa (as well as the number of characters) poses additional problems, e.g. (1) poor resolution caused by the amount and distribution of missing entries (Wilkinson, 1995; Kearney, 1998, 2002); (2) computation time required by large and complex data sets (Farris et al., 1996; Goloboff, 1999; Nixon, 1999; Quicke, Taylor & Purvis, 2001, and references therein); (3) accuracy in the search for optimal trees; and (4) high levels of homoplasy. The number of characters is obviously a function of the number of taxa and of the degree of morphological variation both within and between examined groups. In addition, the extent to which observed morphologies are ‘atomised’ even for the same taxon sample varies considerably from author to author, as does the perceived importance, or ‘weight’, assigned to particular structures.
Fig. 1. Phylogenies of early tetrapods, redrawn and modified from Ruta et al. (2001), after inclusion of *Caerorhachis bairdi*. (A) Coates’ (1996) analysis; (B) Paton et al.’s (1999) analysis; (C) Ahlberg & Clack’s (1998) analysis; (D) Laurin’s (1998b) analysis. Abbreviations as follows: ADE., Adelospondyli; AIS., Aı̂stopoda; AMN., crown-group Amniota; ANT., Anthracosauria (including Embolomeri and Gephyrostegidae); BAP., Baphetidae; COL., Colosteidae; DIA., Diadectomorpha; LIS., crown-group Lissamphibia; LYS., Lysorophia; MIC., Microsauria; NEC., Nectridea; SEY., Seymouriamorpha; TEM., Temnospondyli.
Clearly, characters should be targeted at the diversity displayed by the memberships of very large exemplars. Finally, inclusion/exclusion of taxa and/or characters may affect the outcome of an analysis in unpredictable ways (e.g. Clack, 1998a,c, 2001; Paton et al., 1999; Ruta et al., 2001). However, various theoretical approaches to character inclusion/exclusion often have been misguided by the lack of an adequate conceptual framework [see Grandcolas et al.’s (2001) discussion of the ‘precise primary homologies’ approach]. Also, taxon removal because of incomplete preservation and missing character scores may be undesirable, because such taxa may have a positive effect on cladogram resolution (Novacek, 1992; Wilkinson, 1995; Kearney, 1998, 2002; Anderson, 2001).

III. HISTORICAL BACKGROUND

Lack of space prevents an exhaustive treatment of the history behind phylogenetic studies of early terrestrial vertebrates. Therefore, only a brief summary is given

Fig. 2. Distribution of primitive tetrapod groups in recently published cladistic analyses, based on their assignment to stem-tetrapods (dark grey), stem-lissamphibians (white) or stem-amniotes (black). The vertical axis represents the total number of groups (embolomeres and gephyrostegids are treated as separate groups). Numbers inside bar diagrams indicate their percentage distributions. Light grey areas refer to groups that have not been examined. If an analysis yields different topologies, group distributions are plotted separately for each topology. The diagrams do not consider several Devonian and Carboniferous genera/species.
in this section [see also Laurin (1998b), Carroll (2001) and Ruta et al. (2001)]. Among the first attempts at producing synapomorphy schemes used to reconstruct the broad pattern of relationships between major Palaeozoic tetrapod groups are those by Heaton (1979, 1980), Gardiner (1982, 1983), Holmes (1984), Smithson (1985), Gauthier, Kluge & Rowe (1988a, b), Panchen & Smithson (1987, 1988) and Godfrey (1989). Panchen & Smithson (1988) proposed a deep phylogenetic split between ‘reptiliomorphs’ (amniote-related groups) and ‘batrachomorphs’ (lissamphibian-related groups). In Panchen & Smithson’s (1988) scheme, ichthyostegids, nectrideans, colosteids and microsaurs are successively more closely related to a temnospondyl-lissamphibian clade, whereas baphetids (loxommatids), anthracosauroids, Seymouria, Seymouriamorphae (the latter two groups sometimes thought to be each other’s closest relatives) and diadectomorphs are successively plesions on the amniote stem-group. The problematic Crassigyrinus was considered to be either a plesion between baphetids and a clade of anthracosauroids plus Seymouria, or the sister taxon to anthracosauroids. Lepospondyl monophyly is explicitly rejected in Panchen & Smithson’s (1988) cladogram. Subsequent studies (e.g. Lombard & Sumida, 1992; Lee & Spencer, 1997) have corroborated to a large extent the scheme of ‘reptiliomorph’ relationships proposed by Panchen & Smithson (1988) and Gauthier et al. (1988).

A series of new studies on Devonian and primitive Carboniferous forms during the mid and late 1990s (Ahlberg, 1991, 1995, 1996; Coates, 1991, 1995, 1996; Ahlberg et al., 1994; Daeschler et al., 1994; Clack & Coates, 1995; Coates & Clack, 1995; Lebedev & Coates, 1995; Lombard & Bolt, 1995; Jarvik, 1996; Clack, 1995; Milner & Lindsay, 1998), and the publication of the first, large-scale, computer-assisted cladistic analysis of Palaeozoic tetrapods by Carroll (1995), gave new impetus to early tetrapod research. In Carroll’s (1995) study, the hypothesis of a chronologically deep phylogenetic event leading to the separation between lissamphibians and amniotes is implicit, although no members of the lissamphibian crown-group were included. In addition, lepospondyls form a clade on the amniote stem-group. Following the description of the postcranial of Acanthostega, Coates’ (1996) analysis [an elaborated version of Lebedev & Coates’s (1995) work] followed previous authors’ suggestions that the lissamphibian/amniote split was a deep phylogenetic event. It also corroborated Lebedev & Coates’s (1995) conclusion that such a split can be traced back to the late Devonian, based on Lebedev & Coates’s (1995) and Coates’ (1996) interpretation of Tulerpeton as a primitive ‘reptiliomorph’. Other studies supporting a fundamental dichotomy between Palaeozoic tetrapods, based on different subsets of anatomical characters, are those by Sumida & Lombard (1991), Berman, Sumida & Lombard (1992), Sumida, Lombard & Berman (1992), Lee & Spencer (1997), Sumida (1997) and Berman (2000).

Clack (1998a, c, 2001) and Paton et al. (1999) published detailed character analyses for several Palaeozoic groups with an aim to assess the relationships of such problematic forms as Crassigyrinus, Whatcheeria, Eucritta and Casineria. These works paved the way to further scrutiny of problematic regions of the tetrapod tree. Examples include the lissamphibian-amniote split, the pattern of character acquisition in the crownward part of the tetrapod stem-group and in the basal portions of the lissamphibian and amniote stem-groups, and the placement of ‘difficult’ taxa, such as baphetids.

Significantly, the results of Laurin & Reisz’s (1997, 1999) and Laurin’s (1998a–c) analyses departed radically from those of previous studies. In these works, the tetrapod stem-group became much longer, because a series of groups (e.g. embolomeres, temnospondyls) were removed from amniote or lissamphibian ancestry. As a result, the established pattern of character-state changes along the amniote and lissamphibian stem-groups collapsed. Some of the characters generally considered to be diagnostic of basal ‘reptiliomorphs’ and ‘batrachomorphs’ now informed the order of cladogenetic events preceding the crown-tetrapod radiation. Lepospondyls now formed a paraphyletic array of stem-group lissamphibians, whereas diadectomorphs [as well as Solenodonsaurus in Laurin & Reisz’s (1999) analysis] became the only plausible stem-group amniotes. Some of the conclusions reached by Laurin & Reisz (1997, 1999) and Laurin’s (1998a–c) were corroborated by Ahlberg & Clack’s (1998) analysis of lower jaw characters, especially with regards to the stem-tetrapod affinities of Crassigyrinus, Tulerpeton, Whatcheeria, colosteids and baphetids. Ahlberg & Clack’s (1998) analysis incorporated isolated material into a wider taxon set, and detected patterns of jaw character transformation across the fish–tetrapod transition and the crownward part of the stem-group. However, they also found that lower jaw data are apparently insufficient to retrieve a single origin for several long-accepted Palaeozoic groups, which appear, instead, as para- or polyphyletic assemblages [but see Ruta & Coates (in press)].

The most recent cladistic analyses of early tetrapods are those by Anderson (2001) and Clack (2002). Although few taxa were considered outside lepospondyls, Anderson’s (2001) work generally agrees with Laurin & Reisz’s (1997, 1999) and Laurin’s (1998a–c)
results by placing lepospondyls on the lissamphibian stem, and seymouriamorphs, embolomeres and temnospondyls on the tetrapod stem. Clack’s (2002) analysis encompasses a diverse range of early tetrapod groups, and offers a rather unconventional branching pattern. Whatheeveraids, Crassigyrinus, Eotherpeton, embolomeres and gephyrostegids are successively more closely related to a diverse group including, on the one hand, Westlothiana as sister taxon to lepospondyls, and on the other, seymouriamorphs and temnospondyls as successive sister groups to a clade of colosteids plus Caenorhachis paired with Eucrinita plus baphetids. Evaluation of the results of Anderson’s (2001) and Clack’s (2002) studies is beyond the scope of the present review.

Persistent conflict indicates that the resolution of several phylogenetic problems must await comprehensive treatment of the expanding tetrapod data base, as well as input from smaller-scale studies targeted at the specific relationships within various groups. As noted by Carroll (2001: p. 1212), ‘We have a great deal of knowledge of the anatomy of a vast array of Palaeozoic tetrapods (Heatwole & Carroll, 2000), but the specific interrelationships of the major taxa and their affinities with the modern orders remain impossible to establish with assurance without much more knowledge of fossils from the Lower Carboniferous and from the period between the Lower Permian and the Jurassic’. Carroll’s (2001) statement identifies the problem of discovering unambiguous phylogenetic signal behind the broad spectrum of primitive tetrapod morphologies. This review is intended to resolve some of the current problems, not only by presenting a new hypothesis of relationships, but also by identifying the limits and difficulties of the ongoing debate. Unlike Carroll (2001), we argue that lack of critical fossils from crucial periods of tetrapod history may be less significant than a detailed scrutiny of the evidence available, at least in some regions of the tetrapod tree.

IV. TAXONOMIC DEFINITIONS

Two issues of taxonomic nomenclature are addressed here. The first relates to the definition and taxonomic content of Tetrapoda, and the second concerns the introduction of ‘… new [taxonomic] names and altered meanings for old names’ (Greene, 2001: p. 738), and their use in phylogenetic systematics.

Several definitions of Tetrapoda have been proposed. Laurin & Reisz (1997, 1999), Laurin (1998a–c) and Laurin, Girondot & deRicqlès (2000a, b) adopt a node-based definition, referring the Tetrapoda exclusively to the crown-group. In several important respects, this resembles Gaffney’s (1979: p.103) explicitly nodal definition of the Neotetrapoda (contra Laurin, 2002). All of these definitions have been established with clear reference to taxon naming within a phylogenetic framework (e.g. deQueiroz & Gauthier, 1990, 1992, 1994; Cantino et al., 1999; Bryant & Cantino, 2002, and references therein). According to Laurin et al. (2000b), the ‘… [phylogenetic nomenclatural] system clarifies the taxonomy … because there is only one valid phylogenetic definition (the first published one) for each taxon name’. We note that this definition prunes the content of the Tetrapoda, relative to previous uses of this term (Coates, 1996; Benton, 2000; Coates et al., 2000; Forey, 2001; see also below). However, as pointed out by Coates et al. (2000: p. 327), not only the biological community, but ‘… the world at large has a say about what is, or is not, a tetrapod’.

Tetrapods have long been identified on the basis of limbs with digits, i.e. synonymous with dactylus, but it is now clear that digit presence extends beyond the crown clade. Within Laurin’s (1998b) and Laurin & Reisz’s (1999) preferred tree topologies, several Upper Devonian to Upper Permian dactylous groups, crownward of Panderichthyidae, are excluded from the Tetrapoda. Instead, these clades now rank among a heterogeneous stem assemblage of ‘non-tetrapod stegocephalians’. The Tetrapoda, sensu Laurin (1998b), is poorly informative in evolutionary as well as general biological discussions of dactylous vertebrates as a whole, although this has been one of the most easily recognized of all vertebrate groups (Goodrich, 1930; Romer, 1966; Gaffney, 1979; Panchen & Smithson, 1987, 1988; Benton, 1988, 2001; Carroll, 1988; Schultz & Trueb, 1991). As an alternative, we advocate the use of a total-group (stem-based) definition of the Tetrapoda.

Objections to a stem-based definition have been raised by Ahlberg (1998) and Ahlberg & Clack (1998) (see also Clack, 1998; 2001). Their arguments can be summarized as follows: (1) there is at least no consensus on the identity of the Recent sister group of living tetrapods (Forey, 1998; Zardoya & Meyer, 2001); (2) the taxonomic content of the ‘fish-like’ portion of the tetrapod stem-group is not agreed upon (see Zhu & Schultze 2001) and Johanson & Ahlberg (2001) for summary hypotheses; and (3) digits cannot be used to characterize the basal ‘fish-like’ part of the tetrapod stem-group. Furthermore, although limb bone fragments have been attributed to various Devonian stem-tetrapods (e.g. Ahlberg, 1991, 1998; Ahlberg et al., 1994), the occurrence of digits in such forms is unknown. For these reasons, Ahlberg (1998) and
Ahlberg & Clack (1998) propose an apomorphy-based definition, but acknowledge that this represents only a temporary solution (see also Clack, 1998c). Specifically, dactyly is chosen as the key derived character for Tetrapoda – again, in agreement with traditional definitions (see comments in Anderson, 2001). This clade encompasses all taxa crownward of Elpistostegalia (the group including *Panderichthys* and allied forms). However, once again, the exclusion of various basal groups from Tetrapoda (e.g. the paraphyletic array of ‘osteolepiform fishes’; Ahlberg & Johanson, 1998) limits the information content discovered in cladistic analysis, although less so than Laurin’s and Laurin & Reisz’s node-based definition. Such basal groups are named, rather clumsily, ‘non-tetrapod tetrapodomorphs’ (e.g. Cloutier & Ahlberg, 1996; Ahlberg & Johanson, 1998).

Operationally, the adoption of a total-group definition (e.g. Jeffery, 1979; Craske & Jefferies, 1989; Budd, 2001; Jeffery, 2001) solves some of the above-mentioned nomenclatural problems (see also discussion in Coates, 1996). Thus, the tetrapod stem-group includes any fossil taxon that can be shown, based on a formal character analysis, to be more closely related to lissamphibians and amniotes than to any other living group. This holds true regardless of the presence/absence of key apomorphic features (such as digits), and the identity of the tetrapods’ extant sister taxon (e.g. Jeffery, 2001). If a fossil is more closely related to either extant lissamphibians or extant amniotes, it is a member of the crown-group by definition (see above). Uncertainty in the placement of extinct forms in the basal part of the crown-group or in the crownward part of the stem-group is irrelevant, because the membership of a total-group only concerns closeness of relationship of any fossil to one particular extant clade (Patterson & Rosen, 1977; Jefferys, 1979; Craske & Jefferies, 1989; Forey, 1993; Patterson, 1993a, b, 1994; Smith, 1994; Nixon & Carpenter, 2000; Budd, 2001; but see also Brochu & Sumrall, 2001). The approach advocated here is not new. For example, the ‘stem-modified node-based definition’ employed by Meng et al. (1994) and Wyss & Meng (1996) is much the same in its formulation [see comments in Sereno (1998, 1999) and Bryant & Cantino (2002)]. Importantly, a total-group definition can accommodate a node-based phylogenetic definition without sacrificing cladistic information, whereas the converse is not true. From a purely operational perspective, stability in taxonomic content and degree of corroboration of clades (Lee & Spencer, 1997) may become secondary issues. Also, Lee & Spencer (1997) and Sereno (1998, 1999) showed that adoption of crown-clade definitions does not necessarily lead to increased taxonomic stability. Furthermore, we leave aside the issues of naming cladogram nodes within extinct monophyla, and the widespread misuse of plesions [sensu Patterson & Rosen, 1977; see Craske & Jeffery’s (1989) approach to plesion subdivision].

Several examples from the literature show that the often heated debates on assignments of taxonomic names to specific cladogram nodes (e.g. Aves, Mammalia, Tetrapoda) may be ill-conceived. These debates could be avoided by adopting total-group definitions, which are only marginally affected by reshuffling of extinct taxa, or by changes in the fossil membership of crown-groups. Thus, referring to *Eusthenopteron* as a stem-tetrapod should not be more puzzling or counter-intuitive than regarding ceratopian dinosaurs (e.g. *Triceratops*) as stem-birds, sail-back pelycosaurs (e.g. *Dimetrodon*) as stem-mammals, or *Australopithecus* as a stem-human. In all cases, an explicit hypothesis of relationship with a living monophylum is provided, and ‘…the name and rank given to the clade formed by the modern phylum is extended to include all stem group members of that taxon’ (Smith, 1994: p. 97). Sereno (1998, 1999) notes that the interpretation of fossils always relies upon identification of one or more key features shared with a Recent taxon, even if such fossils fall outside the crown-group. Thus, using an appropriate name modifier might be suitable in dealing with crown-clades (e.g. living or Recent Mammalia; living or Recent Aves) instead of restricting a well-known name to the crown-clade exclusively.

Apomorphy-based names are problematic in at least two respects. First, a taxon for which a character cannot be coded (e.g. because of unknown or inapplicable information) may fall inside or outside a group defined upon the possession of the character in question. Its inclusion or exclusion from the group depends upon alternative character state optimizations (e.g. accelerated or delayed transformations). Likewise, if a taxon does not show a certain character, but its position in a cladogram is nested between groups that display that character, then optimization implies either parallel acquisitions (delayed transformation), or a single origin followed by secondary loss in the taxon in question (accelerated transformation). Second, key apomorphy definitions can be problematic. Various conditions of particular structures may occur at different stem-group nodes (e.g. integumentary structures preceding true feathers in several theropods; e.g. Xing, Zhong-He & Prum, 2001).

Anderson’s (2001) definition of Tetrapoda uses Elpistostegalia and crown-tetrapods as ‘anchor’ taxa, and is argued to be consistent with traditional usage as
well as phylogenetic nomenclature. We acknowledge the rationale behind Anderson’s (2001) usage, but the exclusion of taxa less crownward than Elpistostegalia is somewhat arbitrary. Moreover, the monophyly of Elpistostegalia is questionable, and there is always the potential that incompletely known fossils, such as *Elpistostegus* (Schultze & Arsenault, 1985), could turn out to be more closely related to alternative groups, the consequences of which would depart radically from Anderson’s stated intention.

A further nomenclatural issue concerns the application of historically laden names to novel phylogenetic definitions (see also Anderson, 2001). Laurin’s (1998a–c) Anthracosauria is a prime example, because it includes none of the taxa traditionally placed within ‘anthracosaurs’, such as embolomeres, gephyrostegids and, more unquestionably, seymouriamorphs (Heaton, 1980; Smithson, 1985; Panchen & Smithson, 1987, 1998; Gauthier et al., 1988b; Forey, 2001). Instead, the new definition refers to a clade encompassing Solenodonsaurus, diadectomorphs and crown-amniotes. Consequently, *Anthracosaurus russelli* Huxley, 1863 is neither an anthracosaur nor a tetrapod, whereas T. H. Huxley himself would be classified as a cotylosaurian anthracosaur. Such long-abandoned terms as Cotylosaurus and Stegocephali, traditionally referring to archaic grade-groups, are now re-introduced with a novel content. Thus, Cotylosaurus includes Anthracosauria minus *Solenodonsaurus* (i.e. diadectomorphs plus crown-amniotes), whereas Stegocephali includes all taxa with digits, i.e. tetrapods in the traditional sense (Goodrich, 1930; Gaffney, 1979; Coates, 1996; Ahlberg, 1998; Ahlberg & Clack, 1998; Anderson, 2001). This resurrectionist approach is currently the subject of intense debate [for conflicting views, see Benton (2000), Nixon & Carpenter (2000), Cantino (2000), Coates et al. (2000), Forey (2001), Brochu & Sumrall (2001), Bryant & Cantino (2002), and references therein].

V. TAXON EXEMPLARS

The limits and content of several early tetrapod groups are widely agreed upon and, with few exceptions (e.g. anthracosaurs, microsaurs, temnospondyls), their monophyly has not been disputed (Säve-Söderbergh, 1934; Carroll, 1970; Heaton, 1980; Smithson, 1985, 1986, 1994, 2000; Gauthier et al., 1988b; Clack, 1994c, 1998a,c; Smithson et al., 1994; Lombard & Bolt, 1995; Coates, 1996; Laurin & Reisz, 1997, 1999; Laurin, 1998a–c; Ahlberg & Clack, 1998; Paton et al., 1999; Berman, 2000; Bolt & Lombard, 2000; Anderson, 2001; Ruta et al., 2001). Ninety species are included in the present work (see Appendix 1 for a list of the specimens examined). OTUs are chosen according to three criteria: (1) sample of maximally diverse taxon exemplars (Nixon & Davis, 1991; Anderson, 2001; Prendini, 2001); (2) inclusion of the majority of taxa considered in previous studies; (3) use of species as terminals (e.g. Bininda-Emonds, Gittleman & Purvis, 1999; Anderson, 2001). Justification for the exclusion of some species is provided in the relevant taxonomic sections below. The plesiomorphic conditions of various tetrapod groups remain untested in several analyses. Therefore, large exemplars are used when hypotheses of relationships within a particular group are unavailable, or are based on a limited character/taxon sample. Diverse exemplars may also prevent spurious pairing of taxa resulting either from long branch attraction or from a host of convergent characters. For instance, a cluster of ‘absence’ features may discriminate against sister group relationships based on a smaller number of ‘good’ apomorphies. Finally, if members of a group display conflicting character distributions, exemplars should encompass such distributions.

Few basal crown-lissamphibians and crown-amniotes are considered here. Recent supraspecific OTUs are omitted, since large-scale interrelationships of primitive tetrapods are our main focus. Laurin & Reisz’s (1997, 1999) and Laurin’s (1998a–c) analyses include several families from each of the three lissamphibian orders. However, comparisons between Palaeozoic and Recent faunas demand a proper evaluation of the primitive condition for several extant groups, and may be impractical, given the aims of this study. As an alternative approach, primitive members of various modern clades could be included to document crown-tetrapod diversity in the Mesozoic and Cenozoic. The utility of such a comprehensive data set is nonetheless dubious, since convergent features are likely to be widespread. Also, the size of the resulting matrix and the abundant missing entries may introduce severe computation problems.

(1) Devonian and Lower Carboniferous taxa

(a) Taxonomic sample

Acanthostega gunnari Jarvik, 1952.

Ichthyostega stensiowi Säve-Söderbergh, 1932.

Crassigyrinus scoticus Watson, 1929.

Eucritta melanolinnetes Clack, 1998a.

(b) Remarks

Crassigyrinus scoticus and Whatcheeria deltae are among the most problematic of early Carboniferous tetrapods [reviews in Clack & Carroll (2000) and Bolt & Lombard (2000)]. Traditionally, they have been regarded as having “reptiliomorph” affinities (e.g. Panchen, 1973, 1985; Panchen & Smithson, 1987, 1988; Lebedev & Coates, 1995; Lombard & Bolt, 1995; Coates, 1996; Clack, 1998, a, c, 2001; Paton et al., 1999; Bolt & Lombard, 2000), but evidence in support of their placement among basal stem-ammniotes has been challenged repeatedly (e.g. Laurin & Reisz, 1997, 1999; Ahlberg & Clack, 1998; Laurin, 1998–c; Clack & Carroll, 2000; Clack, 2002). Westlothiana from the uppermost Viséan of East Kirkton is usually considered to be one of the most primitive stem-ammniotes (Smithson & Rolfe, 1990; Smithson et al., 1994). However, Laurin & Reisz (1999) placed Westlothiana as the closest outgroup to the tetrapod crown-clade. Caerorhachis, probably from the lowermost Serpukhovian of Scotland (Holmes & Carroll, 1977), was originally described as a basal temnospondyl [see Milner & Sequeira (1994) and Coates (1996) for an alternative view], but has been reinterpreted as a primitive ‘reptiliomorph’ by Ruta et al. (2001). More recently, Clack (2002) has placed this tetrapod as sister group to coleosteids. Finally, Eucritta from East Kirkton displays a unique array of baphetid, temnospondyl and ‘anthracosaur’ features (Clack, 1998a, 2001) that account for the instability of the basal part of the tetrapod crown-group (but see comments in Thorley & Wilkinson, 1999).

(2) Acherontiscidae
(a) Taxonomic sample

(b) Remarks
Re-examination of the single known specimen of Acherontiscus (lowermost Serpukhovian of Scotland) indicates that it is probably an immature or pedomorphic adelospondyl (M. Ruta, personal observations). Vertebral construction is light; ribs are weakly ossified; skull roof, cheek bones, arrangement of circumnarial bones and mandibular shape are consistent with this interpretation. Discussion of the anatomy and relationships of this poorly known form will be presented in a future publication.

(3) Adelospondylida
(a) Taxonomic sample
Adelogyrinidae: Adelogyrinus watsoni Carroll, 1967; Adelogyirus simorhynchus Watson, 1929; Dolichopareias disjectus Watson, 1929.

(b) Remarks
Adelospondyls, ranging from the upper Viséan to the lowermost Serpukhovian, have been reviewed by Andrews & Carroll (1991), Carroll et al. (1998) and Carroll (2000). Details of the skull roof are known in most species and, in the case of Adelospondylus, a partially preserved palate is also observed. Lower jaws and partial postcranial remains are associated with Adelogyirus and Adelospondylus. A fourth species, Palaeomolgaphis scoticus Brough & Brough, 1967, known from a postcranium and associated partial skull roof, incomplete palate and lower jaws, will be discussed in conjunction with the planned revision of Acherontiscus caledoniae. Adelospondyls display a highly specialized skull roof (e.g. reduction and/or loss of several bones; presence of a squamosotabular element), heavily ossified gill arches, and apparent absence of endochondral
shoulder girdle and limbs. Conversely, the dermal portion of the shoulder girdle is robust. Limb absence may well be a preservational artifact, especially because of the very few specimens known. No pelvic girdle has been observed. Some details of the snout and elongate skull roof and cheek bones resemble those in colosteids (Smithson, 1982; Schultze & Bolt, 1996; Panchen & Smithson, 1987). Similarities with colosteids are also evident in the general morphology and flange-like processes of the ribs. By contrast, the vertebrae are gastrocentrous, like those of microsaurs and lysorophids (see below).

(4) **Aistopoda**

(a) Taxonomic sample

Ophiderpetontidae: *Ostocephalus amphiuminum* Cope, 1868.

Phlegethontiidae: *Phlegethontia linearis* Cope, 1871.

(b) Remarks

Aistopods, ranging from the mid Viséan to the upper part of the Lower Permian, are limbless, snake-like tetrapods characterized by a broad postorbital emargination of the cheek, covered by a sheet of integument with embedded ossicles. The suspensorial configuration led Lund (1978) to suggest the occurrence of a snake-like skull kinetism in *Phlegethontia*, but Anderson’s (in press) review of phlegethontiid crania indicates that this is incorrect, although limited kinesis near the snout tip may have occurred. The highly specialized nature of aistopods poses problems for a correct assessment of their affinities [Carroll, 1998; see Anderson (2001) for ongoing anatomical and systematic revision of this clade]. *Lethiscus* is usually regarded as the most basal known aistopod, based on its skull roof pattern (see also Milner, 1994). According to Anderson, Carroll & Rowe (2001), *Lethiscus* shows similarities with ophiderpetontids, which are paraphyletic relative to other aistopods. *Ostocephalus* and *Phlegethontia* are the best known genera within ophiderpetontid and phlegethontiid aistopods, respectively (review in Carroll *et al.*, 1998). The cranial anatomy of *Ostocephalus* has been recently redescribed by Carroll (1998), McGinnis’ (1967) and Lund’s (1978) classical papers on *Phlegethontia* are now superseded by Anderson’s (in press) revision of this genus. Several cranial and postcranial characters of aistopods (especially the morphology of the vertebrae in some taxa) indicate possible affinities with nectrideans, in agreement with Thomson & Bossy’s (1970) Holospondyli (=aistopods plus nectrideans) hypothesis.

(5) **Baphetidae**

(a) Taxonomic sample

Baphetidae: *Baphetes kirkbyi* Watson, 1929; *Mega-locephalus paechycephalus* (Barkas, 1873).

(b) Remarks

The interrelationships of baphetids, an uppermost Viséan to uppermost Moscovian group of tetrapods with keyhole-shaped orbits and a closed palate, remain unclear. Unequivocal association of cranial and postcranial material can be established only for *Baphetes* cf. *kirkbyi* (Milner & Lindsay, 1998). The lower jaw mesial surface is known in detail only in *Megaloccephalus* (Beaumont, 1977; Ahlberg & Clack, 1998). The aberrant *Spathicephalus* Watson, 1929 (Beaumont & Smithson, 1998) is morphologically very divergent from remaining baphetids, although it is likely to be the sister taxon to these (Beaumont & Smithson, 1998). *Loxomma* Huxley, 1862 is in several respects intermediate morphologically between *Baphetes* and *Megaloccephalus*, but its exclusion from the data set has no impact on the outcome of the analysis. Baphetids have been variously regarded as derived stem-tetrapods, basal stem-lissamphibians, or even basal ‘reptilomorphs’. Evidence in support of each of these hypotheses is problematic (Beaumont, 1977; Panchen, 1980; Panchen & Smithson, 1987; Ahlberg & Milner, 1994; Carroll, 1995; Laurin & Reisz, 1997, 1999; Beaumont & Smithson, 1998; Clack, 1998a, c, 2001; Laurin, 1998a–c; Milner & Lindsay, 1998). Various cranial and postcranial features (e.g. supratemporal–postparietal contact; fang pairs on palatal bones; shape of the humerus) indicate the primitive nature of this group, and contrast with such autapomorphic features as keyhole-shaped orbits, drop-shaped choanae and small temporal notches bordered anteriorly by the supratemporal (e.g. Clack, 1998a, 2001).

(6) **Colosteidae**

(a) Taxonomic sample

Colosteidae: *Colostus scutellatus* (Newberry, 1856); *Greererpeton burkemorani* Romer, 1969.

(b) Remarks

Colosteids range from the upper Viséan to the uppermost Moscovian. *Colostus* and *Greererpeton* are the best known members of the group (Smithson, 1982; Hook,
the presence of a five-digited manus in *Greererpeton* extremity of the dentary. Coates (1996) demonstrated the occurrence of a four-digited manus in *Colosteus* is based on data from Hook (1983), although the limb material of this genus is less well preserved than that of *Greererpeton*. Superficially, colosteids resemble certain temnospondyls [e.g. eobrachyopids (=saurerpetontids)], but similarities between the two groups are usually assumed to be convergent. Various skull roof features (e.g. elongate frontals and parietals) resemble those of certain lepospondyls (e.g. adelospondyls,nectrideans) and may indicate a close relationship (e.g. Panchen & Smithson, 1987; Milner, 1993; see also discussion of cranial data analysis below).

(7) Diadectomorpha

(a) Taxonomic sample

Limnoscelidae: *Limnoscelis paludis* Williston, 1911.

(b) Remarks

Diadectomorphs range from the upper Bashkirian to the upper part of the Lower Permian, and are usually regarded as the closest relatives of crown-amniotes (e.g. Lee & Spencer, 1997), based on cranial and postcranial characters (Laurin & Reisz, 1997, 1999; Laurin, 1998a–c), morphology of the occiput (Berman, 2000), and atlas–axis complex (Sumida & Lombard, 1991; Berman et al., 1992; Sumida et al., 1992). According to Berman et al. (1992) and Berman (2000), the highly autapomorphic nature of *Diadectes* makes this taxon unsuitable for polarising characters at the base of the amniote tree. For this reason, and in agreement with previous studies (e.g. Laurin & Reisz, 1997, 1999; Laurin, 1998a–c), a second diadectomorph — *Limnoscelis paludis* — is included in this work (Williston, 1912; Romer, 1946; Fracasso, 1987; Berman & Sumida, 1990; Berman et al., 1992; Berman, 2000). Pending a detailed redescription of *Tsejajiia campi* Vaughn, 1964, this taxon is excluded from the data matrix (Moss, 1972; Walliser, 1998, 1999). The arrangement of bones in the posterior and posterolateral portions of the skull table of diadectomorphs is reminiscent of those in several primitive crown-amniotes (e.g. Berman et al., 1998; Berman, 2000). This is especially evident in the enlargement of the parietals and in the expansion of the supraoccipital. A series of recent papers (Sumida & Lombard, 1991; Berman et al., 1992, 1998; Sumida et al., 1992; Berman, 2000) have clarified several poorly understood aspects of diadectomorph osteology, but the origin and diversification of this group remain problematic.

The Pennsylvanian *Solenodonsaurus janensis* Broili, 1924 has been generally allied to ‘reptiliomorphs’ (Pearson, 1924; Brough & Brough, 1967; Carroll, 1970; Gauthier et al., 1988b; Laurin & Reisz, 1999), based on its skull table morphology, gastrocentrous vertebrae and curved ribs. It is included in the present work because of its combination of features found in different ‘reptiliomorphs’, such as gephyrostegids, seymouriamorphs, diadectomorphs and basal crown-amniotes. According to Laurin & Reisz (1999), *Solenodonsaurus* is the sister taxon to a clade encompassing diadectomorphs and crown-amniotes (but see Lee & Spencer, 1997).

(8) Embolomeri and Eoherpetontidae

(a) Taxonomic sample

Anthracosauridae: *Anthracosaurus russelli* Huxley, 1863.
Archeriidae: *Archeria crassidens* (Cope, 1884).
Eogyrinidae: *Pholidertpeton attheyi* (Watson, 1926);
Pholidertpeton scutigerum Huxley, 1869.

(b) Remarks

Emboloherpetes and eoherpetontids [uppermost Viséan to lowermost Upper Permian; review in Panchen (1980)] include some of the best known Coal Measures ‘anthracosaurs’ (sensu Smithson, 1985, 1986, and Panchen & Smithson, 1987, 1988; see also Clack, 1994c). Several authors interpret ‘anthracosaurs’ as a basal radiation of aquatic or semiaquatic, long-bodied and amniote-like taxa (e.g. Panchen & Smithson, 1988; Coates, 1996; Lee & Spencer, 1997; Clack, 1998a, c, 2001; Paton et al., 1999). However, their phylogenetic position relative to amniotes has been questioned (Laurin & Reisz, 1997, 1999; Laurin, 1998a–c), and the possibility that they fall outside the tetrapod
crown-group cannot be ruled out (Dr J.A. Clack, personal communication to M. Ruta, 2001; see also Clack, 2002). Although embolomere anatomy is known in great detail (e.g. Romer, 1957; Panchen 1964, 1970, 1972, 1973, 1977, 1980; Holmes, 1980, 1984, 1989; Smithson, 1985; Clack, 1987a, b; Clack & Holmes, 1988), surveys of character distribution have not resulted in a consensus over their intrinsic relationships (e.g. Holmes, 1984, 1989; Smithson, 1985; Clack, 1987a). Silvanerpeton miripes Clack, 1994c and Eldacecephalites Smithson, 1994, both from the uppermost Viséan site of east Kirkton, are two of the earliest known ‘anthracosauroids’. Several postcranial features (e.g. U-shaped intercentra and pleurocentra; low neural spines; small tabular horns) suggest that they are less derived than embolomeres.

(9) Gephyrostegidae

(a) Taxonomic sample

(b) Remarks

The monophyly of gephyrostegids (lower Bashkirian to uppermost Moscovian) is supported by some recent studies (Paton et al., 1999), and implicitly assumed in others (e.g. Laurin & Reisz, 1997, 1999; Laurin, 1998a–c). Gephyrostegids have long been considered to share characteristics with ‘anthracosaurs’ and higher ‘reptilomorphs’ (e.g. Carroll, 1970, 1986, 1991b; Heaton, 1980; Smithson, 1985). Several cranial features resemble conditions in embolomeres, seymouriamorphs and various basal crown-amniotes (e.g. protorothyridids and captorhinids). Similarities with primitive amniotes are also evident in palatal bone proportions and in the morphology of the parabasisphenoid (e.g. Lee & Spencer, 1997). However, they lack a toothed transverse pterygoid flange, long regarded as a key amniote apomorphy (discussions in Carroll, 1970, 1991b). Likewise, their lower jaws (Ahlberg & Clack, 1998) include a mixture of features otherwise found in embolomeres and basal amniotes. Finally, the postcranium combines primitive features (e.g. U-shaped intercentra and pleurocentra) with several derived ones (e.g. reduced dorsal iliac blade; scapulocoracoid extending posterovertrally with respect to the posterior glenoid margin; L-shaped tarsal intermedium). Although morphological evidence is not strong (e.g. Carroll, 1991b), gephyrostegids may lie closer to early amniotes than embolomeres (see also Lee & Spencer, 1997).

(10) Lysorophia

(a) Taxonomic sample

Coeptinidae: Brachydectes elongatus Wellstead, 1991; Brachydectes newberryi Cope, 1868.

(b) Remarks

Lysorophids (upper Bashkirian to upper part of Lower Permian) are among the most enigmatic of all lepospondyls. The most recent account of the group is by Wellstead (1991). Their highly specialized and elongate skulls are characterized by a bar-like, anterogradely sloping suspensorium and by a large fenestration in the cheek region that becomes confluent with the orbit anteriorly (Bolt & Wassersug, 1975). Other noteworthy features are the extreme reduction and poor ossification of limbs and girdles, the presence of vertebral keels, the occurrence of sutures between neural arches and vertebral bodies and the extreme elongation of the trunk region. As in the case of microsaurs, the occiput of lysorophids is strap-shaped. In addition, lysorophids share various cranial and mandibular characters with one or more microsaur families. For example, the configuration of the mandible and the shape and proportions of the premaxillae are reminiscent of those of brachystelechids (see also Wellstead, 1991). Laurin & Reisz (1997, 1999) and Laurin (1998a–c) place lysorophids as the nearest relatives of crown-lissamphibians. However, most of the characters supporting this position appear to be secondary losses (e.g. those related to certain cranial and palatal bones; see also Carroll & Bolt, 2001). Furthermore, some supposed synapomorphies are dubious. An example is represented by the occurrence of a cheek emargination, which is only superficially similar to that of certain primitive crown-lissamphibians and dissorophoids (Carroll, 2001). In these groups, the maxillary arcade is often incomplete posteriorly and the palatal bones are reduced to slender rods or struts. Conversely, the maxillary arcade of lysorophids is extensively sutured medially with broad palatal bones. Anderson (2001) considers lysorophids to be allied to aistopods – both groups being nested within nectrideans (Fig. 3). Brachydectes is here treated as a composite genus, with anatomical information based on both B. elongatus and B. newberryi (see also Anderson, 2001).

(11) Microsauria

(a) Taxonomic sample

Brachystelechidae: Batropetes fritschi (Geinitz & Deichmüller, 1882).
Hapsidopareiontidae: Hapsidopareion leptos (Daly, 1973); Saxonerpeton geinitzi (Credner, 1890).

Goniorhynchidae: Rhyynchonkos stovalli (Olson, 1970).

Gymnarthridae: Cardiocephalus sternbergi Broilli, 1904 a; Euryodus primus Olson, 1939.

Hylopleciontidae: Hyloplecion longicostatum Fritsch, 1876; Diceratosaurus brevirostris Currie, 1975.

Microbrachidae: Microbrachis pelikanii Fritsch, 1876; Trachydectes elongatus / newberryi Broilli, 1904.

Odontopterontidae: Odontopteron triangulare Moodie, 1909.

Pantylidae: Pantylus cordatus Cope, 1871; Stegotretus agirus Berman, Eberth & Brinkman, 1888.

Tuditanidae: Asaphestera intermedia (Dawson, 1894); Tuditanus punctulatus Cope, 1874.

(b) Remarks

Microsaurs range from the uppermost Serpukhovian/lowest Bashkirian to the upper part of the Lower Permian and are the most diverse of all lepospondyl groups. Carroll & Gaskill (1978, and references therein) monographed the entire group. Gregory, Peabody & Price (1956) is a standard reference for gymnarthrids. Fifteen of the 21 genera examined by Anderson (2001; Fig. 3) are included in the present work. The following taxa, however, are omitted: (1) the brachystelechids Carrolia Langston & Olson, 1986 and Quasicaecilia Carroll, 1990; (2) one species from each of the two genera Cardiocephalus and Euryodus (Gymnarthridae); (3) the hapsidopareiontid Llistrofus Carroll & Gaskill, 1978; (4) the pantylid (fide Anderson, 2001) Sparodus Fritsch, 1876; (5) Utaherpeton Carroll, Bybee & Titwell, 1991; and (6) an unnamed microsaur from Mazon Creek. A recently described, unnamed microsaur from Goreville, Illinois (Lombard & Bolt, 1999) is also excluded because of incomplete preservation.

Differences in the arrangement of skull roof bones are the most distinctive features of microbrachomorph and tuditanomorph microsaurs (Carroll & Gaskill, 1978). Few characters are shared by these two groups, the most important of which is the strap-shaped configuration of the exoccipitals and basioccipital, which is observed also in lycorophids (see above). Microbrachomorphs and tuditanomorphs possess a single bone in the position usually occupied by the intertemporal, supratemporal and tabular in several early tetrapods. In agreement with previous works (e.g. Carroll & Gaskill, 1978), the bone in question is interpreted as a tabular, based upon topological similarity. We note that this conjectural homology assessment affects further character scores that depend upon the morphology and spatial relationships of the tabular.

The extrinsic relationships of microsaurs are debated [see Milner (1993) for a summary]. Panchen & Smithson (1988) and Milner (1993) regard the presence of a ‘waisted’, propellor-blade like humerus as a synapomorphy of microsaurs and temnospondyls. However, humerus shape varies considerably both among temnospondyls and, to a lesser extent, among microsaurs. The hypothesis that cæcilians evolved from long-bodied, presumably burrowing lepospondyls (Carroll & Currie, 1975; Carroll, 2000) has received support in certain recent analyses (e.g. Laurin & Reisz, 1997, 1999; Laurin, 1998a–c; Anderson, 2001). In particular,
Anderson's (2001) study points to brachystelechids as the nearest relatives of caecilians.

Few phylogenetic analyses of microsaurs are available in the literature. Gymnarthrid interrelationships and a family-level analysis of tuditanomorphs are detailed by Schultz & Foreman (1981; see also Milner, 1993), whereas pantylids are discussed by Berman (1997, 1999) and Laurin (1993), whereas pantylids are discussed by Berman (1997, 1999) and Laurin (1998a–c) dispute the monophyletic status of microsaurs. In their analyses, Pantylus, Rhyynchonkos and Brachystelechidae are progressively more closely related to lysorophids plus crown-lissamphibians, implying ipso facto the paraphyletic status of tuditanomorphs. However, their taxon sample does not represent adequately microsaur diversity, and is biased towards inclusion of taxa with presumed gymnophionan (Rhyynchonkos) or generalized lissamphibian similarities (Brachystelechidae) (Carroll & Currie, 1975; Carroll, 2000; Anderson, 2001). In Anderson’s (2001) cladogram, tuditanomorph microsauras include, in proximo-distal sequence, hapsidopareiontids (monophyletic), tuditanids (monophyletic), ostodolepids (monophyletic), and a clade of pantylids plus gymnothriids placed as sister group to a clade of rhynchonkids, brachystelechids and Eocaecilia. In the same study, microbrachiomorphs are distributed as follows: (1) Utaherpeton and Hyloptlesion are basal to all remaining lepospondyls; (2) Odonterpeton is basal to hapsidopareiontids and more derived tuditanomorphs; (3) Microbrachis and the unnamed microsaur from Mazon Creek form the monophyletic sister group to all other (non-microsaur) lepospondyls.

(12) Nectridea

(a) Taxonomic sample

Diplocaulidae: Batrachiderpeton reticulatum (Hancock & Atthey, 1869); Diceratosaurs brevirostris (Cope, 1875); Diplocaulus magnicornis Cope, 1882; Diploceraspis burkei Romer, 1952; Keraterpeton galvani Wright & Huxley, 1866.

Scincosauridae: Scincosaurus crassus Fritsch, 1876.

Urocordylidae: Pyonius marshi Cope, 1875; Sauropleura Cope, 1868 [treated as a composite genus with data from two species, S. pectinata Cope, 1868 and S. scalaris (Fritsch, 1883)]; Urocordylus wandesfordii Wright & Huxley, 1866.

(b) Remarks

Nectrideans are known from the upper Bashkirian to the lowermost Upper Permian, and are usually divided into urocordylids, scincosaurids and diplocaulids. The present work encompasses 75% of the taxa examined by Anderson (2001; Fig. 3). The genus Cinerpeton Cope, 1897 and some species of Diplocaulus and Sauropleura are excluded. Diagnostic characters of nectrideans are observed almost exclusively in the postcranial skeleton (A. C. Milner, 1980) and relate to vertebral morphology (e.g. configuration of neural and haemal arches; extra-articulations above zygapophyses). Some of these characters are shared with at least some aistopods (Bossy & Milner, 1998; Anderson, in press). A striking aspect of the anatomy of all nectrideans is the extreme elongation of the tail. Hardly any character of the skull roof and palate can be identified as a shared derived feature of the three families. However, there is agreement on the derived status of diplocaulids relative to other nectrideans. Various analyses (A. C. Milner, 1980; Milner, 1993; Bossy & Milner, 1998) place scincosaurids as the sister taxon to diplocaulids, based upon such unique features as the quadratercium-bracing internal shelf of the squamosal. According to Panchen & Smithson (1988), nectrideans are just crownward of ichthyostegids on the lissamphibian stem, based largely on the presence of a four-digit manus. Milner’s (1993) scheme of relationships agrees mostly with that of Panchen & Smithson (1988), except that nectrideans and aistopods appear as sister taxa. Three characters of the skull table are used by Milner (1993) to unite nectrideans with aistopods. Two of these – skull table elongation; broad postorbital-parietal contact – are also present (each one separately or both together) in other lepospondyl taxa (e.g. Acherontiscus; adelospondyls), and their conditions reverse within derived nectrideans. The third character (prefrontal bordering external naris and excluding nasal from naris margin) is problematic. Although the prefrontal enters the nostril in many nectrideans, the nasal does contribute to the nostril in several genera. Nectrideans are similar in several respects to aistopods (e.g. Thomson & Bossy, 1970; Anderson, in press), but no support for a nectridean-aistopod clade has been found in recent studies (Carroll, 1995; Laurin & Reisz, 1997, 1999; Laurin, 1998a–c; Anderson, 2001). In Anderson’s (2001) cladogram, aistopods and lysorophids form the sister group to diplocaulids, with urocordylids and scincosaurids as progressively more outlying clades. These results are in agreement with the observation that hardly any cranial feature of nectrideans is uniquely shared by all members of this group (Beerbower, 1963; A. C. Milner, 1980; Milner, 1993; Bossy & Milner, 1998), and that similarities with representatives of other clades are widespread (Anderson, in press).
Taxonomic sample

Discosauriscidae: *Discosauriscus austriacus* (Makowsky, 1876).

Kotlassiidae: *Kotlassia prima* Amalitsky, 1921.

Seymouriiidae: *Seymouria baylorensis* Broili, 1904;b; *S. sanjuanensis* Vaughn, 1966.

Remarks

The phylogenetic position of seymouriamorphs (Pennsylvanian/Permian boundary to late Upper Permian) has been debated for almost a century. Characters of the lower jaw (e.g. rearward extension of splenial; anterior mandibular foramen) and vertebreal column (e.g. gastrocentrocentru with cylindrical pleurocotina; swollen neural arches) indicate possible amniote affinities (Gauthier et al., 1988a, b; Sumida & Lombard, 1991; Sumida et al., 1992; Klembara, 1997; Lee & Spencer, 1997; Sumida, 1997; Ahlberg & Clack, 1998; Berman et al., 2000; Klembara & Bartik, 2000, and references therein). However, the construction of the palate and occipit reveals several primitive traits (White, 1939; Laurin, 1995, 1996;b; Berman, 2000). Soft tissue and osteological markers indicate the presence of gill filaments and electro-receptors in certain forms (Ivakhnenko, 1981; Kuznetsov & Ivakhenko, 1981; Klembara, 1994, 1995). Various features of the limbs (especially the femur) and pelvic girdle resemble closely those of diadectomorphs. Among the characters supporting seymouriamorph monophyly are a broad, transverse lamina ascenden of the pterygoid (but this character may be more widely distributed among early tetrapods), small posttemporal fenestrae, otic tubes and slender stapes [summary in Laurin (1998b, 2000); see also Klembara (1997) and Klembara & Bartik (2000)].

In the present work, *Seymouria* is treated as a composite genus. Anatomical information is based on the works of White (1939), Berman & Martens (1993), Laurin (1995, 1996b), Berman et al. (2000) and Klembara, Martens & Bartik (2001). *Seymouria baylorensis* and *S. sanjuanensis* differ in details of the skull roof and postcranium, but a comparative study of these species must await an exhaustive redescription of *S. sanjuanensis* (Dr J. Klembara, personal communication to M. Ruta, 2001; but see also Berman et al., 2000). The cranial and postcranial anatomy of *Discosauriscus* have been thoroughly restudied by Klembara (1997, and references therein) and Klembara & Bartik (2000, and references therein). *Kotlassia* has been re-examined by Bystrow (1944). Unfortunately, several osteological details of the latter form are very poorly known and need adequate redescription. Pending a reassessment of several eastern European and western Asian seymouriamorphs [see Ivakhnenko (1981), Kuznetsov & Ivakhenko (1981), Zhang, Li & Wan (1984), Laurin (1996a, e, 1998a–c) and Laurin & Reisz (1997, 1999)], these are not considered further here, but the reader should refer to Ivakhnenko (1987) and Novikov, Shishkin & Golubev (2000) for reviews.

Taxonomic sample

Amphibamidae: *Amphibamus grandiceps* Cope, 1865; *Doleserpeton annectens* Bolt, 1969; *Eoscopus lockardii* Daly, 1994; *Platyhyphops lyelli* (Wyman, 1858).

Branchiosauridae: *Apateon pedestriss Meyer, 1844; Lep- toropus tener* (Schönhfeld, 1911); *Schoenfelderpeton pre- scheri* Boy, 1986.

Dendrerpetontidae: *Dendrerpeton acadianum* Owen, 1853.

Eobrachyopidae: *Isodectes obtusus* (Cope, 1868).

Eryopidae: *Eryops megacephalus* Cope, 1877.

Micromelerpetontidae: *Micromelerpeton cretheri* Bulman and Whittard, 1926.

Trematopidae: *Acheloma cummins* Cope, 1882; *Pho- nerpeton princei* (Olsen, 1941).

Remarks

The nature and status of temnospondyls (uppermost Viséan to Albian), the most abundant and diverse of all groups of early tetrapods, are intensely debated. Temnospondyls have long played a pivotal role in our understanding of lissamphibian origins (e.g. Bolt, 1969, 1977, 1979, 1991; Milner, 1988, 1990, 1993, 2000; Trueb & Cloutier, 1991; Rocek & Rage, 2000a; Gardner, 2001). However, some recent analyses have questioned their lissamphibian affinities (Laurin & Reisz, 1997, 1999; Laurin, 1998a–c). The most distinctive character of temnospondyls is the occurrence of interpterygoid vacuities at least half as wide as the
skull and bordered by triradiate pterygoids (Milner, 1988, 1990, 1993; Milner & Sequeira, 1994; Holmes, 2000). Although palatal vacuities are known in several other groups, those present in the vast majority of temnospondyls have a strongly concave perimeter, including the anteriormost extremity (Edops being one notable exception). These features occur in at least one microsaur and in some nectrideans (Carroll & Gaskill, 1978; A.C. Milner, 1980; Milner, 1993; Bossy & Milner, 1998; Ruta et al., 2001). However, Anderson (2001) has demonstrated recently that regressions of estimated areas of the interpterygoid vacuities over skull lengths in several temnospondyls and microsaur are significantly different, and that the vacuities of microsaur are absolutely smaller than those of temnospondyls. Cochleosaurid edopoids possess plectrun- or teardrop-shaped vacuities in the posterior half of the palate, somewhat intermediate between those of Edops and higher temnospondyls (Milner & Sequeira, 1998). We follow Milner & Sequeira (1994, 1998) in considering edopoids as the most basal temnospondyl clade. The large-scale interrelationships of post-edopoid temnospondyls remain poorly understood, despite much recent progress (e.g. Schoch & Milner, 2000; Yates & Warren, 2000; Damiani, 2001). In Milner’s (1990) phylogenetic scheme, post-edopoid temnospondyls are divided, in order of increasing affinities with crown-lissamphibians, into a trimerorhachoid complex, a stereospondyl complex (a derived and diverse clade within archegosauroids), an eryopoid complex and a dissorophoid complex (Holmes, 2000; Schoch & Milner, 2000). Eryopoids are variously regarded as a paraphyletic group relative to stereospondyls, or to stereospondyl plus dissorophoids (Milner, 1990; Milner & Sequeira, 1998). Yates & Warren (2000) group trimerorhachoids (their Dvinosaurus) with stereospondyls, and place this broader clade (termed the Limnarchia) as sister taxon to an eryopoid-dissorophoid clade (their Euskelia).

An exhaustive treatment of temnospondyls is beyond the scope of the present work. Certain studies have explored the interrelationships of several temnospondyl subgroups (e.g. Schoch & Milner, 2000; Yates & Warren, 2000; Damiani, 2001; Steyer, 2002), although a large-scale computerized phylogeny of the whole clade has not been attempted (but see Milner, 1990). For this reason, we use mostly those genera that have been included in previous small-scale analyses (e.g. Berman, Reisz & Eberth, 1985; Dilkes, 1990; Trueb & Cloutier, 1991; Daly, 1994; Milner & Sequeira, 1994, 1998; Godfrey & Holmes, 1995; Godfrey, Fiorillo & Carroll, 1987; Holmes, Carroll & Reisz, 1998; Laurin, 1998a–c; Holmes, 2000). Taxon sample is necessarily limited. It does, however, encompass members of most major temnospondyl groups. The content and limit of some of these groups are still poorly understood. Eryops appears to be a generalized eryopoid (Holmes, 2000), and undoubtedly one of the best known Palaeozoic tetrapods (Romer, 1922, 1947; Miner, 1925; Sawin, 1941; Moulton, 1974). Trimerorhachoids are the subject of ongoing investigation (see Sequeira, 1998). Finally, dissorophid interrelationships are still in a state of flux, despite the amount of morphological information available for several families (e.g. Watson, 1940; Carroll, 1964; Boy, 1972, 1974, 1978, 1985, 1986, 1987, 1995; Bolt, 1979, 1991; Milner, 1988, 1990, 1993; Dilkes, 1990; Trueb & Cloutier, 1991; Schoch, 1992; Daly, 1994; Boy & Sues, 2000, and references therein). One of the dissorophoids examined by Laurin & Reisz (1997, 1999) and Laurin (1998a–c) – the genus Tersomius Case, 1910 – is excluded from the present study. Specimens attributed to Tersomius consist of assorted skulls some of which probably belong to immature dissorophids and to various amphibamids (Bolt, 1977; Dr A.R. Milner, personal communication to M. Ruta, 2001).

(15) Crown-group Lissamphibia

Numerous recent discoveries (e.g. Jenkins & Walsh, 1993; Shubin & Jenkins, 1995; Jenkins & Shubin, 1998; Evans & Sigogneau-Russell, 2001; Gao & Shubin, 2001) add to our knowledge of primitive lissamphibian diversity [reviews in Báez & Basso (1996), Carroll (2000), Milner (2000) and Rocek (2000), and references therein]. Small-scale analyses of early salientians, caudates and gymnophionans (e.g. Báez & Basso, 1996; Evans & Sigogneau-Russell, 2001; Gao & Shubin, 2001; Gao & Wang, 2001) provide a framework for the choice of exemplars. Only certain fossil representatives of the three modern lissamphibian clades are considered here: the Early Jurassic stem-gymnophionan Eocaecilia micropoda Jenkins & Walsh, 1993 (review in Carroll, 2000); the Early Triassic stem-salientian Triadobatrachus massinoti (Piveteau, 1936) (Watson, 1940; Hecht, 1960, 1962; Kuhn, 1962; Estes & Reig, 1973; Rage & Rocek, 1986, 1989; Rocek & Rage, 2000b); the Late Jurassic stem-caudate Karaurus sharovi Ivakhnenko, 1978 (review in Milner, 2000). The Early Cretaceous caudate Valdoritron gracilis Evans & Milner, 1996, is also included in the analysis. Additional primitive lissamphibians will be considered in an expanded version of our data set. Published schemes of character distribution [summaries in Estes (1981) and Milner (1988)] support the basal position of...
Triadobatrachus, Karaurus and Eocaecilia relative to other fossil saurians, caudates and gymnophionans, respectively. The family Albanerpetontidae, briefly reviewed by Milner (2000), consists of problematic salamander-like forms variously regarded as caudate relatives or as derived stem-lissamphibians (see also McGowan & Evans, 1995). In a recent paper, Gardner (2001, and references therein) placed albanerpetontids on the stem of the caudate-salientian group (but see also Trueb & Cloutier (1991) and Milner (2000)). Coding for albanerpetontids is based on information from two of the best preserved species, Albanerpeton inexpectatum Estes & Hoffstetter, 1976 (Gardner, 1999) and Celtedens ibericus McGowan & Evans, 1995. Pending a re-assessment of such problematic groups as batrachosauriods and scapherpetontids (review in Milner, 2000), these are excluded from the present study.

(16) Crown-group Amniota

Only three stem-diapsid taxa are considered – the captorhinid Captorhinus aguti Cope, 1882 (Fox & Bowman, 1966; Modesto, 1998); the protorothyridid Paleothyris acadiana Carroll, 1969a (Carroll, 1970, 1991b; Clark & Carroll, 1973); the araeoscelidian Petrolacosaurus kansensis Lane, 1945 (Peabody, 1952; Reisz, 1977, 1981). These appear to be generalized basal crown-amniotes, and their anatomy is known in sufficient detail (Carroll & Baird, 1972). Additional species from the basal portions of the synapsid and reptile branches of the amniote crown-group will be considered in an expanded version of our data set (see also Gauthier et al., 1988b). The diversification of primitive amniotes has been the subject of intense revision over the last ten years (e.g. Carroll & Currie, 1991). The fundamental split of amniotes into Synapsida (mammals and their extinct relatives) and Reptilia (turtles, lizards, snakes, birds, crocodiles and their extinct relatives) is widely accepted (Reisz, 1986; Hopson, 1991). However, the branching pattern in the basal part of crown-Reptilia has not reached a satisfactory consensus. The core of the problem revolves around the position of turtles and the placement of several Permo-Carboniferous and Triassic groups (e.g. Ivakhnenko, 1987; Gauthier et al., 1988a, b; Reisz & Laurin, 1991; Lee, 1993, 1995, 1996; Laurin & Reisz, 1995; Rieppel & deBraga, 1996; deBraga & Rieppel, 1997; Rieppel & Reisz, 1999).

Paton et al. (1999) interpreted the Scottish upper Viséan tetrapod Casineria kiddi as the earliest known amniote, and placed it in a polytomy with Westlothiana, Captorhinus, Petrolacosaurus and Paleothyris. In Paton et al.'s (1999: p. 512) words, although the results of their phylogenetic analysis ‘... are not very robust, [they] nonetheless appear to place Casineria not only on the amniote stem but also among the true amniotes of the Late Carboniferous ... It could thus be an amniote, predating not only the earliest true amniotes from the Westphalian, but also the earliest previously known stem-amniote, Westlothiana, from East Kirkton’.

(17) Outgroups

Recent comprehensive analyses (Cloutier & Ahlberg, 1996; Ahlberg & Johanson, 1998; Zhu & Schultze, 2001; Johanson & Ahlberg, 2001) have repeatedly and consistently found panderichthyids and tristichopterids to be successively more outlying sister groups to the limbed tetrapods. In agreement with these studies, and contra Rosen et al.’s (1981) hypothesis (for a detailed and comprehensive analytical criticism, see Panchen & Smithson, 1987), the tristichopterid Eusthenopteron foordi Whiteaves, 1881 (Andrews & Westoll, 1970; Jarvik, 1980, and references therein) and the panderichthyid Panderichthys rhombolepis (Gross, 1930) (Vorobyeva, 1977, 1992, 2000; Vorobyeva & Schultze, 1991; Ahlberg, Clack & Luksevics, 1996; Ahlberg & Clack, 1998, and references therein) are used to polarize characters.

VI. CHARACTERS

We are in the process of compiling a new, expanded matrix for early tetrapods based upon the data set presented here, and including a detailed character discussion. To aid cross-reference between elements of the present and future matrices, each character, as stated in Appendix 2, is preceded by a bold number identifying its position in the current data matrix (see Appendix 3), and by an italicized, abbreviated name and number for the osteological feature to which it refers (this second number will remain in future versions). A key feature of subsequent data sets will be to provide detailed treatments of each aspect of the anatomy of primitive tetrapods. Work in this direction has already begun (e.g. Lombard & Bolt, 1999; Bolt & Chatterjee, 2000; Bolt & Lombard, 2001).

VII. ANALYSIS

(1) Character coding

The theoretical and practical problems associated with different regimes of character coding are intensely
debated topics (e.g. Scotland & Pennington, 2000). In the present work, most characters are binary and refer to the presence or absence of a structure (or condition of a structure). Multistate characters are coded as unordered (non-additive) in all analyses. All characters are equally weighted and optimized using ACCTRAN. A discussion of the results implied by different coding methods (cf. Pleijel, 1995) is outside the aims of this work, and will be detailed elsewhere. The data matrix includes unknown scores for inapplicable characters. In this respect, the coding regime is similar to Forey & Kitching’s (2000) contingent method. Optimization of state changes (available upon request from the authors) often leads to undesirable results, as in the case of inapplicable scores. For example, an unknown score for the condition of a certain bone (e.g. suture pattern between intertemporal and cheek region in a taxon that lacks an intertemporal; e.g. Solenodontaurus) may be fully optimized on a branch that subtends a taxon in which the bone in question is absent.

(2) The parsimony ‘ratchet’

A data matrix consisting of 90 taxa coded for 319 osteological characters (224 cranial and 95 postcranial) was built in MacClade 3.0.5 (Maddison & Maddison, 1992), which was also used to manipulate trees in experiments of taxon pruning and regrafting, in the analysis of suboptimal cladograms, and in comparisons between conflicting positions for various taxa. Cladistic analyses were performed on a PowerMac G4 computer using PAUP* 4.0b10 (Swofford, 1998). Because PAUP* only supports MINSTEPS, tree lengths reported treat all polytomies as soft.

The widespread occurrences of missing entries and the moderately large size of the complete data matrix made it likely a priori that finding the optimum tree(s) under parsimony optimality criteria would be difficult. Therefore, we employed a range of tree searching strategies to maximize our chances of finding optimal islands. In order to cover a wide range of tree space in a practical length of time (days) we carried out 40000 random stepwise additions followed by TBR (tree bisection-reconnection) branch-swapping searching, but holding only one tree in memory at any one time (i.e. MAXTREES = 1) (Quicke et al., 2001). These searches hit trees of the shortest length recovered over 150 times. Searching on each tree with unlimited MAXTREES recovered the same island of trees. No shorter trees were recovered by employing the iterative re-weighting strategy proposed by Quicke et al. (2001). Searching on subsets of characters (e.g. see below for a discussion of cranial character analysis, removal of lower jaw characters and reverse weighting tree search strategy) was essentially the same from a methodological point of view, except that only 5000 random stepwise additions were used.

(3) Results

A parsimony analysis with all characters unordered and equally weighted yielded 64 equally parsimonious trees, constituting a single island, with a length of 1375 steps [ensemble consistency index (CI) excluding uninformative characters = 0.2392; ensemble retention index (RI) = 0.6727; ensemble rescaled consistency index (RC) = 0.1654]. A strict consensus (Fig. 4) shows the following unresolved relationships: (1) the node subtending all included species of äsistopods; (2) an internal node within the embolomeres, with a trichotomy subtending Archeria crassidica, Pholidopetron scutigerum and a clade formed by Anthracosaurus russelli and Pholidopetron attheyi; (3) the node subtending derived dissorophoids, with four amphibamid species collapsed in a polytomy with a clade including micromelerpetontids and branchiosaurids and a clade encompassing albanerpetontids and basal crown-group lissamphibians; (4) the node leading to albanerpetontids and Eoceccilia micropoda, both forming an unresolved trichotomy with a collapsed clade including Karaurus shawei, Valdotriton gracilis and Triadobatrachus massinoti; and (5) an internal node within diplacaudid nectrideans, with Battrachiderpeton reticulatum and Diceratosaurus brevirostris collapsed in a polytomy with a clade formed by Diplocaulus magnicornis and Diploceraspis burkei.

One of the 64 fundamental trees (Fig. 5, also shown as circular cladogram in Fig. 6) was chosen to discuss character distribution at selected nodes (character-state distribution for all trees is available upon request from the authors). Overall tree topology is fairly balanced, as evidenced by the Colless index, \(L_c = 0.357 \), which is closer to the value of a fully dichotomous cladogram (0) than to that of a completely pectinate cladogram (1) (Heard, 1992; Colless, 1995). This contrasts with rather higher \(L_c \) values obtained from other recent tetrapod phylogenies, such as those of Carroll (1995; \(L_c = 0.83 \) or 0.75, depending upon tree topology), Coates (1996; \(L_c = 0.7 \), Laurin & Reisz (1999; \(L_c = 0.49 \), Paton et al. (1999; \(L_c = 0.46, 0.44 \) or 0.42, depending upon tree topology) and Anderson (2001; \(L_c = 0.42 \)). For brevity, only ACCTRAN-optimized characters are taken into account in the remainder of the paper (unless otherwise specified).

We used two simple methods to evaluate the amount of phylogenetic signal present in the matrix. The first method is based on comparisons between the
Fig. 4. Strict consensus of 64 equally parsimonious trees deriving from the total data set. Numbers at nodes represent decay index values. Abbreviations as in Fig. 1 with the following additions: ACH., Acherontiscidae; ALB., Albanerpetontidae; EMB., Embolomeri; GEP., Gephyrostegidae.
Fig. 5. One of the fundamental trees deriving from the original parsimony run. Numbers at nodes refer to bootstrap percentage values for clades with bootstrap support greater than 50%. Remaining, unlabelled nodes are collapsed in a bootstrap 50% majority-rule consensus tree.
CI value associated with the real data set, and the expected CI value for an ideal data set of the same size (Sanderson & Donoghue, 1989). The latter value, referred to as CI_{expected}, is related to the number of taxa (n) through the following simple equation:

$$CI_{expected} = 0.9 - 0.022n + 0.000213n^2.$$ \hspace{1cm} (1)

The above formula presents some theoretical problems. A graph of the above equation, with CI_{expected} plotted as a function of the number of taxa, shows that the former decreases continuously for n comprised between 0 and approximately 51. A continuous increase in CI_{expected} values is found for n comprised between approximately 51 and approximately 107 taxa. Thus, the equation represents increasing levels of homoplasy in a data set only within a restricted taxon number interval, with CI_{expected} reaching its minimum theoretical value when only 51 taxa are considered. Homoplasy levels decrease for n greater than 51. Obviously, the equation is not valid for n greater than 107, because CI_{expected} would be greater than 1. For 90 taxa, CI_{expected} = 0.645. The fact that the CI obtained from our data set is considerably

Fig. 6. Circular dendrogram of tetrapod interrelationships using the branching sequence shown in Fig. 5. Selected taxa illustrated as indicators of morphological diversity (figures not drawn to the same scale).
lower than the expected CI value may not necessarily imply low levels of phylogenetic information. It does, however, suggest that ‘noise’ is pervasive.

The second method used to measure the amount of ‘noise’ in the data is based on the index of Klassen, Mooi & Locke (1991), which compares the CI of a real data set with that of a random matrix of the same size. The index, referred to as CI_{random}, is calculated as follows:

$$CI_{random} = 2.937n^{-0.9339}.$$

Briefly, CI_{random} values that are lower than CI values associated with a real data set imply the presence of phylogenetic signal in the latter. For 90 taxa, $CI_{random} = 0.044$. This value is considerably lower than 0.239 retrieved in the original analysis, suggesting that despite the broad range of fossil taxa included, non-random matrix structure exceeds the level of background noise.

Most cladogram nodes are collapsed in a bootstrap 50% majority-rule consensus tree based on 10000 replicates employing the fast stepwise addition option of PAUP*. Bootstrap percentage values greater than 50% are plotted on the selected tree (Fig. 5). Decay index values (Bremer support values) are indicated on the strict consensus tree in Fig. 4. As expected, there is, usually, a good match between bootstrap percentage and decay index. Bremer supports were estimated by running up to 10000 random additions holding no more than one tree for TBR swapping at any one time. Searches were terminated either when they reached the MPT (most parsimonious tree) length of +1 (i.e. Bremer support = 1) or when the length of the shortest tree found had been hit at least 40 times.

(a) The tetrapod stem-group

The branching order of post-pananderichthyid Devonian taxa (Fig. 5; see also lower left sector of Fig. 6) is in broad agreement with the results of several previous works (but see Ahlberg & Clack, 1998). A sister group relationship between Acanthostega and Ichthyostega (e.g. Laurin & Reisz, 1999) can be obtained at the cost of three additional steps. Several authors (Lombard & Bolt, 1995; Lebedev & Coates, 1995; Coates, 1996; Clack, 1998a–c; Paton et al., 1999) have considered Tulerpeton, Crassigyrinus, Whatcheeria and baphetids to be amniote relatives. However, as the morphological and taxonomical data base for early tetrapods expands, the systematic affinities of these tetrapods are changing (e.g. Clack, 2002). The stem-group topology recovered by the present analysis agrees with Ahlberg & Clack’s (1998), Laurin & Reisz’s (1997, 1999) and Laurin’s (1998a–c) results, although the position of the above-mentioned taxa is very weakly supported (Panchen, 1973, 1985, 1991; Panchen & Smithson, 1987, 1988; Lombard & Bolt, 1995; Clack, 1996, 1998a, c, 2001, 2002; Bolt & Lombard, 2000; Clack & Carroll, 2000). Thus, if baphetids are placed on the amniote stem as sister group to Caenorhabdites plus more derived stem-amniotes, then tree length increases by five steps only. With four extra steps, baphetids can be grafted to the lissamphibian stem as sister group to Eucrytida plus temnospondyls. Only two additional steps are required to place a clade consisting of Eucrytida and baphetids on the lissamphibian stem as sister group to temnospondyls, and five to place the same clade on the amniote stem as sister group to Caenorhabdites plus more derived stem-amniotes. However, tree length increases by as many as 32 steps if we impose Clack’s (2001) tree topology, wherein Whatcheeria and Gephyrostegus are successive sister taxa to Crassigyrinus and embolomers, and the Eucrytida-baphetid clad is placed as sister taxon to all of these groups.

Tulerpeton and baphetids are known from incomplete material (but see Lebedev & Coates (1995) and Milner & Lindsay (1998)). The position of Tulerpeton as a primitive stem-amniote in Lebedev & Coates’s (1995) and Coates’ (1996) cladograms implies that the lissamphibian-amniote phylogenetic split had occurred by the late Devonian (Famennian; see also discussion below). Conversely, the present study favours a stem-tetrapod placement for Tulerpeton. Thus far, all studies of Tulerpeton have assumed the coherent nature of the contributory material, ranging from the near-articulated postcranium to isolated palatal and lower jaw fragments (Lebedev, 1984; Lebedev & Clack, 1993; Lebedev & Coates, 1995). We were interested to test the placement and coherence of Tulerpeton as a natural taxon. For this purpose, we built a data matrix in which Tulerpeton was divided into two taxa, Tulerpeton1 consisting of cranial and lower jaw data (with postcranial data coded as unknown), and Tulerpeton2, consisting of postcranial data (with cranial and lower jaw data coded as unknown). The strict consensus of the resulting 256 equally parsimonious trees at 1403 steps (CI = 0.2545; RI = 0.6727; RC = 0.1755) resembles that recovered from the original analysis, but places Tulerpeton1, Tulerpeton2, Crassigyrinus and colosteids in a polytomous node between Ichthyostega and Whatcheeria. Inspection of an Adams consensus and of an agreement subtree [i.e. a taxonomically ‘pruned’ cladogram showing the largest subset of taxa for which all fundamental trees agree upon relationships (Swofford, 1998)] reveals that Tulerpeton1 is a rogue taxon, but that Tulerpeton2 is unequivocally placed
between Ichthyostega and colosteids. Therefore, despite the unstable position of Tulerpeton1, we conclude that both this taxon and Tulerpeton2 fall in the tetrapod stem-group. These results provide insufficient evidence to warrant the treatment of the cranial and postcranial data as belonging to separate OTUs, although conclusive evidence can only come from more complete Tulerpeton material.

The tetrapod crown-group is supported by the following character-state changes (character consistency index expressed as c.i.), none of which represent unambiguous synapomorphies: 51 (c.i. = 0.2; 0 \rightarrow 1), presence of postparietal-exoccipital suture; 78 (c.i. = 0.125; 0 \Rightarrow 1), postorbital broadly crescentic, narrowing posteriorly to a point; 93 (c.i. = 0.333; 1 \Rightarrow 0), jugal without deep, V-shaped indentation along its dorsal margin; 115 (c.i. = 0.286; 3 \rightarrow 4), absence of lateral line system on skull roof; 116 (c.i. = 0.286; 3 \Rightarrow 4), absence of mandibular canal; 208 (c.i. = 0.25; 1 \Rightarrow 0), mid coronoid with denticles; 212 (c.i. = 0.2; 1 \Rightarrow 0), posterior coronoid with denticles; 214 (c.i. = 0.25; 0 \Rightarrow 1), posterior coronoid with posterodorsal process; 238 (c.i. = 0.167; 0 \rightarrow 1), latissimus dorsi process aligned with ectepicondyle; 240 (c.i. = 0.5; 0 \rightarrow 1), absence of ventral humeral ridge.

Eucritta and Caerorhachis bracket the base of the tetrapod crown-group (Fig. 5; see also upper left sector of Fig. 6), thus corroborating previous interpretations of their primitive nature (Clack, 1998a, 2001; Ruta et al., 2001). The mosaic of characters that both taxa share with such diverse groups as baphetids, ‘anthracosauroids’ and temnospondyls indicates strongly that they may be phylogenetically close to the divergence of lissamphibian and amniote clades (Clack, 1998a, 2001; Ruta et al., 2001). Consistent with this interpretation, only two steps are added to tree length if Eucritta is placed in any of the following positions (locations of other taxa being unchanged): sister taxon to baphetids; crownward of baphetids on the tetrapod stem; sister taxon to Caerorhachis plus more crownward stem-amiotes. With three extra steps, Eucritta can be placed between Caerorhachis and embolomeres. With four extra steps, it can be paired with Caerorhachis. Tree length increases by four steps if Caerorhachis is placed either crownward of baphetids on the tetrapod stem or as sister taxon to Eucritta plus more crownward temnospondyls. Alternative placements for Eucritta and Caerorhachis (further away from the crown-group basal node) involve additional steps.

This deep split between lissamphibian- and amniote-related taxa has interesting implications for the distribution of certain characters long regarded as ‘reptilomorph’ or ‘anthracosaurid’ apomorphies (Lombard & Bolt, 1995; Clack, 1998a, c; Paton et al., 1999; Bolt & Lombard, 2000). Several of these may in fact represent tetrapod pleiomorphies at a post-colosteid level, that persist in basal crown-group members. Here, we focus on four such characters: orbit shape, skull roof suture patterns, vertebral body construction and the number of manus digits.

Orbits with an irregularly shaped outline (i.e. neither round nor elliptical) are widespread among early tetrapods. A plausible functional explanation for these shapes has not been found (Clack, 1987b), although several alternatives for the marked antorbital vacuities of baphetids have been offered (Beaumont, 1977; Bjerring, 1986; Milner & Lindsay, 1998), including development of broad insertion areas for jaw musculature; presence of salt glands; and presence of electro-sensory organs. Irregular orbits are also present in Crassigyrinus, Whatcheeria, Eurycotis and, among embolomeres, Anthracosaurus, Carbonoherpoton, Eoherpeton and Pholidopteron atttheyi (Panchen, 1972, 1975, 1977, 1980, 1985; Beaumont, 1977; Klembara, 1985; Clack, 1987a, b, 1998a, c; 2001; Beaumont & Smithson, 1998; Milner & Lindsay, 1998). According to Clack (1998a), the antorbital vacuities of baphetids may represent exaggerated (possibly peramorphic) versions of the small anteroventral orbital embayments of Eucritta (see also Clack, 2001). A similar embayment is also observed in the embolomere Palaeoherpeton (Panchen, 1964, 1980). In Crassigyrinus, the orbit outline is near rhomboidal (Panchen, 1985; Clack, 1998c), and includes a small but distinct anteroventral corner or embayment. A less pronounced version of such rhomboidal orbits is found in Eoherpeton (Smithson, 1985). In baphetids, the dorsal (orbital) margin of the jugal includes a characteristic, deep notch (Beaumont, 1977). However, jugal notches are also present in Anthracosaurus, Carbonoherpoton, Pholidopteron atttheyi and Whatcheeria (Panchen, 1964, 1972, 1977, 1980; Klembara, 1985; Clack, 1987a, b, 1998b, c; Lombard & Bolt, 1995). According to our analysis, angular orbits are a transitory condition, since they occur in a series of stem-tetrapods, some basal stem-amiotes and one stem-lissamphibian. They are not an unambiguous shared derived feature of discrete monophyletic groups. One of the orbit characters employed by Clack (1998c, 2001) relates to the occurrence of an anteroventral orbit corner (our character 105), observed in Crassigyrinus, Eurycotis and Whatcheeria. Under ACCTRAN optimization, this character appears to be transitional in the portion of the stem-group comprised between colosteids and baphetids (i.e. nodes leading to Crassigyrinus and Whatcheeria) and is acquired in parallel by Eucritta. However, if DELTRAN is used, then Crassigyrinus, Eucritta and Whatcheeria are shown to have
acquired an anteroventral orbit corner three times independently.

The distribution of characters describing skull table suture patterns corroborates earlier hypotheses that alternative configurations, including mutually exclusive contacts between supratemporal and postparietal, and between parietal and tabular, have diagnostic value for lissamphibian and amniote relatives (Panchen, 1980; Panchen & Smithson, 1988). Leaving aside the question of bone homologies in the skull table (under ACCTRAN and DELTRAN) in the temnospondyl-lissamphibian clade (but see Boy, 1986). On the amniote branch (with the possible exclusion of Sauropleura), is conserved as a primitive character (under ACCTRAN and DELTRAN) in the temnospondyl-lissamphibian clade (but see Boy, 1986). On the amniote branch (with the possible exclusion of Caeorhachis; Holmes & Carroll, 1977; Ruta et al., 2001), a parietal-tabular contact is observed in all taxa in which these bones are recognisable as separate ossifications (but see Smithson, 1986), including some lepospondyls (e.g. the urocorydil neoticean Sauropleura).

Several models have been proposed to explain the derivation of different vertebral centra from one another or from hypothetical archetypes. Study of primitive tetrapods has clarified the polarity of this character complex (e.g. Coates, 1996). A rachitomous pattern (or derivations thereof) is ubiquitous in stem-tetrapods and among most temnospondyls. The unusual vertebral construction observed in some specimens of Whatcheeria (Lombard & Bolt, 1995) appears to be a simple modification (although not necessarily in a strict phylogenetic sense) of the multipartite centrum of such taxa as colosteids and several temnospondyls (Godfrey, 1989). The morphology of the poorly preserved centra of Tulerpeton (Lebedev & Coates, 1995) and baphetids (Milner & Lindsay, 1998) is also consistent with a rachitomous model, despite little information on their postcraniel skeletons. A gastrocentrous pattern dominates among amniote-like taxa (as well as some derived temnospondyls, e.g. Bolt, 1991; Holmes, 2000; Boy & Sues, 2000). This ranges from the simple construction of Caeorhachis (Holmes & Carroll, 1977; Ruta et al., 2001) and several basal ‘anthracosaurs’ (small intercentra and U-shaped pleurocentra, e.g. Silvanerpeton and Eldeceeon; Clack, 1994b; Smithson, 1994), to the massive, disc-like intercentra and pleurocentra of various embolomeres (e.g. Archieria; Holmes, 1989), and the pleurocentrum-dominated vertebrae of several lepospondyls, Seymouriamorphs, diadectomorphs and crown-amniotes (White, 1939; Romer, 1956, 1966; Carroll & Gaskill, 1978; Sumida, 1997; Carroll, 1988; Carroll et al., 1998; Benton, 2000; Klembara & Bartik, 2000).

In our original data set, conditions describing the number of digits in the manus were treated as independent characters, thus imposing no linkage between them. However, we also explored the effects of multistate coding for digit number. The highest number of digits (eight in Acanthostega) was given state 0 whereas the lowest (three in microbrachomorphs) was given state 5. The character was treated as unordered, thus allowing free transformations between different conditions. A PAUP* run gave 384 equally parsimonious trees at 1400 steps (CI = 0.2558; RI = 0.6723; RC = 0.1762). A strict consensus is almost identical to that obtained from the original analysis, except for a considerable loss of resolution among microbrachomorph and some tudpitanomorph microsaur. Reconstruction of the character-state changes relative to the number of digits on a selected cladogram shows that character optimization is equivocal (under both ACCTRAN and DELTRAN) in the post-panderichthyid part of the tetrapod stem-group. This is not unexpected given the unavailability of data in several stem-tetrapod taxa (Ichthyostega, Crassigyrinus, Whatcheeria, baphetids), and the conflicting distribution of states among colosteids (Hook, 1983; Coates, 1996). Among crown-tetrapods, the presence of a manus with no more than four digits is acquired in parallel in the temnospondyl-lissamphibian clade and in the Westlothiana-lepospondyl clade. Within lepospondyls, digit number decreases further in microbrachomorphs. Therefore, a five-digitied manus does not identify any particular clade. Rather, this condition appears to be transitional among several basal stem-amniotes and primitive crown-amniotes.

(b) The lissamphibian stem-group

The basal node of the temnospondyl-lissamphibian clade (including Eucrissa) is supported by several homoplastic features, some of which relate to optimizations of missing character scores: 144 (c.i. = 0.083; 0 → 1), pterygoid with posterolateral flange; 178 (c.i. = 0.5; 0 → 1), absence of parasymphysial plate; 188 (c.i. = 0.2; 1 → 0), rearmost extension of mesial lamina of splenial closer to anterior end of lower jaw than to adductor fossa; 215 (c.i. = 0.167; 0 → 1), posterior coronoid exposed in lateral view; 229 (c.i. = 0.2; 1 → 0), posterior margin of interclavicle not drawn out into parasternal process; 230 (c.i. = 0.2; 1 → 0), parasternal process not elongate and parallel-sided; 257 (c.i. = 0.154; 2 → 1), radius approximately as long as ulna; 280 (c.i. = 0.143; 1 → 0), ribs mostly straight in at least part of the trunk; 314 (c.i. = 0.25; 0 → 1), presence
of no more than four digits in manus. The shortest path leading from the base of the tetrapod crown-group to the node subtending crown-group lissamphibians includes 115 character-state changes over 12 internodes with an average of 9.6 changes for each internode. Comparisons between crownward stem-tetrapods and temnospondyls reveal the conservative morphology of various skeletal characters in the latter (e.g. skull roof suture pattern; vertebral construction). Unfortunately, the Mississippian record of temnospondyls is sparse (worse than that of stem-group amniotes), presumably as a result of palaeoecological factors. The significance of the near-complete material of Balanerpeton is thus emphasised as a unique glimpse of conditions in the earliest members of the group.

Crownward of *Eucritta*, the branching pattern of the basal part of the temnospondyl tree (Fig. 5; see also upper and middle left sectors in Fig. 6) conforms mostly to the results of several alternative recent analyses (Milner, 1990; Milner & Sequeira, 1994, 1998; Holmes et al., 1998; Holmes, 2000). The Permo-Carboniferous edopoids are a basal clade of long-snouted forms known mostly from cranial material. Several derived edopoids (e.g. *Coelurosaurus* and *Chenoprosopus*) are characterized by broad dorsomesial extensions of the premaxillae, teardrop-shaped choanae, and elongation of the pre- and interchoanal regions (Milner & Sequeira, 1998). The anteriorly sutured pterygoids and the absence of premaxillary alary processes represent possible plesiomorphic characters. Various features of the skull and palate of the recently described *Adamanterpeton ohioensis* indicate the primitive condition from which more derived edopoids might have arisen (Milner & Sequeira, 1998). For example, its rather narrow palatal vacuities are proportioned similarly to those of *Eucritta* and *Caenorhachis* (Holmes & Carroll, 1977; Holmes, 2000; Ruta et al., 2001).

The phylogenetic position of Balanerpeton and Dendrerpeton has been debated (Milner, 1980; Milner & Sequeira, 1994; Holmes et al., 1998; Holmes, 2000). Only two extra steps are required to pair Dendrerpeton with Balanerpeton, as in Holmes et al.’s (1998) phylogeny, or to place them as successively more closely related taxa to eryopoids plus higher temnospondyls. With three extra steps, Dendrerpeton and Balanerpeton can be placed, in that order, as successively more closely related taxa to trimerorhachoids and higher temnospondyls, as in Milner & Sequeira’s (1994) cladogram. If Balanerpeton is paired with trimerorhachoids or inserted between edopoids and trimerorhachoids, then only one extra step is added to tree length. If these latter rearrangements are applied to Dendrerpeton, then tree length increases by two and three steps, respectively.

Dendrerpeton is sister taxon to a clade encompassing eryopoids, dissorophoids and crown-lissamphibians. In the light of recent work on *D. acadianum* (Holmes et al., 1998), the position of this taxon sheds new light on the early diversification of eryopoids and dissorophoids. In particular, it calls for a reassessment of the distribution of such key dissorophoid/salientian features as the occurrence of a posterodorsal process of the quadrates (Lombard & Bolt, 1979; Bolt & Lombard, 1985; Milner, 1988, 1990; Bolt, 1991; Daly, 1994).

The interrelationships of dissorophoids depart significantly from those of previous studies (e.g. Milner, 1990, 1993; Trueb & Cloutier, 1991; Daly, 1994). Dissorophoids emerge as paraphyletic and branch from the lissamphibian stem between trematopids (monophyletic) and a poorly resolved clade consisting of amphibamids, micromelerpetontids, branchiosaurids, albanerpetontids and crown-lissamphibians. The position of *Eocritta*—crownward of trematopids—agrees with one of the two alternative hypotheses of relationship of this taxon postulated by Berman et al. (1985), but contrasts with its relatively derived position in Daly’s (1994) analysis. The most surprising results concern the derived portion of the lissamphibian stem. Thus, amphibamids are paraphyletic with respect to a micromelerpetontid-branchiosaurid clade. Together, these taxa are paired with albanerpetontids plus crown-lissamphibians (Fig. 6, mid-lower left sector). Inspection of an agreement subtree reveals that the only unequivocal pattern of sister group relationships among derived dissorophoids consists of *Leptorophus* and *Schoenfelderpeton* as sister groups, with *Apatenon*, Micromelerpeton and *Eoscopus* as progressively more ‘outlying’ taxa. This broader clade joins albanerpetontids as sister taxon to *Karaurus* plus *Triadobatrachus* in the agreement subtree. This result may reflect a genuine pattern of relationships, or may be due to lack of additional characters. As pointed out by Milner (1993), conflicting character distributions suggest that several dissorophoid lineages approached the condition of basal crown-lissamphibians independently and to varying degrees.

The amount of character convergence in crownward stem-lissamphibians might explain why our analysis fails to retrieve a sister group relationship between one or few specific dissorophoids and crown taxa in some of the most parsimonious solutions. In others, however, including the tree used for character discussion, crown-lissamphibians plus albanerpetontids are paired with a clade consisting of Amphibamus plus Doleserpeton (e.g. Bolt, 1969, 1979, 1991; Trueb & Cloutier, 1991; Milner, 1993). The sequence of cladogetic events in the crownward part of the temnospondyl tree...
re-emphasizes the importance of dissorophoids in the lissamphibian origin debate [but see Laurin & Reisz (1997, 1999) and Laurin (1998a–c) for a contrasting opinion]. The node subtending derived dissorophoids plus crown-lissamphibians is supported by the following character-state changes: 29 (c.i. = 0.1; 0 → 1), maxilla entering orbit margin; 73 (c.i. = 0.077; 0 → 1), parietal–parietal width greater than distance between the posterior margin of the skull table and the posterior margin of the orbits, measured along the midline; 104 (c.i. = 0.105; 2 → 1), minimum interorbital distance smaller than maximum orbit diameter; 126 (c.i. = 0.2; 0 → 1), presence of distinct postero-lateral process of the vomer bounding more than half of the posterior margin of the choana; 150 (c.i. = 0.333; 0 → 1), quadrate ramus of pterygoid straight, rod-like and gently tapering distally; 249 (c.i. = 0.25; 0 → 1), slender and elongate humerus, the length of which is more than three times the width of its distal end; 252 (c.i. = 0.125; 0 → 1), width of entepicondyle less than half the length of the humerus; 283 (c.i. = 1; 0 → 1), longest trunk ribs poorly ossified, slender rods, the length of which is smaller than the length of three mid-trunk vertebrae.

Laurin & Reisz’s (1997, 1999) and Laurin (1998a–c; Fig. 1d) analyses deserve further comment. These authors consider only a limited sample of putative temnospondyl-lissamphibian synapomorphies that they used in Laurin’s (1998a–c) and Laurin & Reisz (1997, 1999) analyses, several other characters used in previous studies (e.g. configuration of various palatal elements) are omitted (e.g. Milner, 1988, 1990, 1993; Bolt, 1991; Trueb & Cloutier, 1991; Daly, 1994). This may be significant.

We decided to assess the impact of ‘absence’ characters against a larger set of putative temnospondyl-lissamphibian synapomorphies than that used by Laurin (1998a–c) and Laurin & Reisz (1997, 1999). Milner (1993) found that in four genera of Amphibamidae, he could discern as few as one (in Platyrhinops) and as many as six (in Doleserpeton) synapomorphies with crown-lissamphibians. When crown-lissamphibians were placed as sister taxon to Doleserpeton, Milner (1993) found that four characters related to dentition, palate and vertebrae originated only once within dissorophoids. In the present analysis, at least some of the fundamental trees (including that in Fig. 4) show that as many as nine characters support a sister group relationship between a clade including Amphibamus plus Doleserpeton, and a clade including albanerpetontids plus crown-lissamphibians: 32 (c.i. = 0.5; 0 → 1), maxillary facial process shaped like a rectangular flange; 127 (c.i. = 0.167; 0 → 1), palatine without fangs; 133 (c.i. = 0.333; 0 → 1), palatine poorly ossified, slender and strut-like; 134 (c.i. = 0.167; 0 → 1), absence of ectopterygoid; 183 (c.i. = 0.1; 0 → 1), dentary without anterior pair of fangs; 218 (c.i. = 0.5; 0 → 1), presence of pedicely on marginal teeth; 258 (c.i. = 0.091; 1 → 0), absence of olecranon process on ulna; 293 (c.i. = 0.333; 0 → 1), trunk pleurocentra fused midventrally; 296 (c.i. = 0.125; 0 → 1), neural spines of trunk vertebrae fused to centra. Placing albanerpetontids plus crown-lissamphibians as sister group to Doleserpeton requires only one extra step, as does Gardner’s (2001) preferred tree topology (albanerpetontids on the common stem-group of salientians and caudates, with caecilians as sister group to remaining lissamphibians). Based on Gardner’s (2001) branching scheme, the following characters unite crown-lissamphibians with Doleserpeton (with or without implied reversals within crown-group lissamphibians): vomer with transverse patch of small teeth posteromesial to choana; 125; absence of ectopterygoid (134); pterygoid sutured with maxilla (146); trunk pleurocentra fused midventrally (293); trunk pleurocentra fused middorsally (294); neural spines of trunk vertebrae fused to centra (296).

We performed further tests to evaluate the significance of alternative taxon arrangements in the crownward part of the temnospondyl branch. In particular, Carroll & Bolt’s (2001) hypothesis of separate
origins of caudates and salientians from among dissorophoids postulates that *Dolaserpeton* and *Apatheon* are the most crownward plesions on the salientian and caudate stem-groups, respectively. For simplicity, dissorophoid relationships were left unchanged. We constrained *Triadobatrachus* to appear as sister taxon to *Dolaserpeton*, and caudates plus caecilians (with albanerpetontids as a more outlying group) as sister taxon to *Apatheon*. This arrangement entails 18 extra steps, but represents a considerably worse fit for the total data than the shortest trees overall (Templeton test: \(P = 0.0027 \); Kishino–Hasegawa test: \(P = 0.0026 \); Winning-sites test: \(P = 0.0046 \). Forcing *Eocaecilia* to appear as sister taxon to the microsaur *Rhynchonkos* [see Carroll & Currie (1975), Carroll (2000) and references therein], but leaving the rest of the ingroup topology unchanged, entails 29 extra steps. Again, such a topology represents a considerably worse fit for the total data than the most parsimonious trees (Templeton test: \(P = 0.0001 \); Kishino–Hasegawa test: \(P = 0.0001 \); Winning-sites test: \(P = 0.0002 \). Similar results (Templeton test: \(P < 0.0001 \); Kishino–Hasegawa test: \(P < 0.0001 \); Winning-sites test: \(P = 0.0001 \)) are obtained if a *Rhynchonkos-Eocaecilia* clade is created with *Triadobatrachus* as sister taxon to *Dolaserpeton* and caudates plus albanerpetontids as sister group to *Apatheon* (tree length increases by 42 steps). Tests of Laurin’s (1998a–c) and Laurin & Reisz’s (1997, 1999) hypothesized sister group relationship between lysorophids and crown-group lissamphibians are described below (Section VII.3h).

A final remark concerns the position of albanerpetontids and caudates. In the present analysis, albanerpetontids appear to be the most crownward plesion on the lissamphibian stem [but see Trueb & Cloutier (1991) and Gardner (2001)]. However, only one extra step is required to place albanerpetontids as sister taxon to *Eocaecilia*, or as a stem-group member of the salientian-caudate clade. Pairing albanerpetontids with either *Triadobatrachus* or caudates increases tree length by four steps. At six, seven and eight extra steps, albanerpetontids can be placed as sister taxon to *Valdotriton, Karaurus* or *Triadobatrachus*, respectively. A caecilian-caudate clade requires three extra steps. Although this clade has not been retrieved in several traditional, morphology-based schemes of lissamphibian relationships (e.g. Estes, 1981; Duellmann & Trueb, 1986; Milner, 1988), it is nonetheless found in some morphological studies [discussion in Milner (1988), and references therein], as well as in some recent molecular analyses (e.g. Feller & Hedges, 1998, and references therein).

Feller & Hedges (1998) erected the clade Procera for the monophyletic group including salamanders plus caecilians, and listed some osteological and soft anatomical features in support of it. However, evaluation of the osteological evidence must await a redescriptions of *Eocaecilia* (but see Carroll, 2000) as well as a re-examination of several early salamander-like taxa (e.g. batrachosauroidids; scapherpetontids; the problematic *Ramonellops*, Nevo & Estes, 1969; review in Milner, 2000). The Procera hypothesis has some interesting implications for the assessment of character distribution among primitive crown-group lissamphibians. For instance, Laurin (1998b) reasoned that the presence of a tympanum, deduced to have existed in at least some temnospondyls, cannot be used as a valid argument to support derivation of lissamphibians from temnospondyls. Because the tympanum is present only in salamarians (frogs), the conventional phylogenetic arrangement of salamarians as sister taxon to caudates (with caecilians as sister taxon to the remaining two orders) would entail unparsimonious independent losses of a tympanum in caecilians and salamanders (which could nevertheless have happened), or its loss at the base of the lissamphibian crown-group followed by reacquisition in frogs, depending upon character optimization. However, if salamanders and caecilians are indeed sister groups, only a single loss event at the base of the Procera is required under all character optimizations. Furthermore, Milner (1988; quoting Smirnov, 1986) points out the fundamental similarities between the early developmental stages of the salientian and caudate ears and the fact that the adult ear of frogs may represent the likely primitive condition for both groups, the caudate ear being secondarily reduced.

(c) The amniote stem-group

Eleven character-state changes support the basal node of the amniote stem-group. Once again, none of these synapomorphies is unambiguous. These changes include: 5 (c.i. = 0.2; 0 → 1), premaxillae less than two-thirds the width of the skull; 66 (c.i. = 0.1; 1 → 0), supratemoral contact with squamosal smooth; 68 (c.i. = 0.2; 0 → 1), tabulars with subdermal blade-like postero-lateral horns; 107 (c.i. = 0.125; 0 → 2), pineal foramen situated anterior to interparietal suture mid length; 117 (c.i. = 0.333; 0 → 1), ventral, exposed surface of vomers narrow, elongate and strip-like, without extensions anterolateral or posterolateral to choana and two and a half to three times longer than wide; 234 (c.i. = 0.125; 0 → 1), scapulocoracoid extending ventral to posteroventral margin of glenoid; 253 (c.i. = 0.125; 0 → 1), length of humeral shaft portion proximal to entepicondyle greater than the width of humeral head; 261 (c.i. = 0.2; 0 → 1), ilium with...
transverse pelvic ridge; 276 (c.i. = 0.25; 0 → 1), tarsus with L-shaped proximal element; 293 (c.i. = 0.333; 0 → 1), pleurocentra fused midventrally; 315 (c.i. = 0.25; 0 → 1), presence of no more than five digits in manus. The shortest path leading from the base of the tetrapod crown-group to the node subtending crown-group amniotes includes 72 character-state changes over eight internodes with an average of nine changes for each internode. The branching sequence of taxa in the proximal half of the amniote stem (Fig. 5) reflects the conventional view that embolomeres are an early offshoot of (perhaps secondarily) aquatic, long-bodied amniotes, and that gephyrostegids are more crownward, and presumably more terrestrial forms (Fig. 6, uppermost sector). See Laurin & Reisz (1997, 1999) and Laurin (1998a–c) for alternative views. Likewise, the pattern of sister group relationships in the crownward part of the amniote tree is in partial agreement with several previous hypotheses (e.g. Gauthier et al., 1988b; Sumida & Lombard, 1991; Berman et al., 1992; Sumida et al., 1992; Laurin & Reisz, 1997, 1999; Laurin, 1998a–c; Berman, 2000).

Character-state changes at the node subtending Solenodonsaurus and more crownward amniotes are as follows: 40 (c.i. = 0.167; 0 → 1), presence of suture between parietal and postorbital; 60 (c.i. = 0.167; 0 → 1), intertemporal absent as separate ossification; 61 (c.i. = 0.167; 0 → 1), intertemporal interdigitating with cheek (it is noteworthy that the occurrence of this character-state change provides no phylogenetic information for this branch whatsoever, since it derives from optimization of a morphological condition that is linked to a more generalized character; such an optimization exemplifies problems deriving from missing entries to signify inapplicable characters, and introduces a bias in the computation of branch length); 66 (c.i. = 0.1; 0 → 1), interdigitating contact between supratemporal and squamosal; 68 (c.i. = 0.2; 1 → 0), tabulars without subdermal blade-like postero-lateral horns; 89 (c.i. = 0.083; 0 → 1), jugal ventral margin of skull roof; 104 (c.i. = 0.015; 1 → 0), interorbital distance greater than maximum orbit diameter; 118 (c.i. = 0.125; 0 → 1), vomer without fang pair; 127 (c.i. = 0.167; 0 → 1), palatine without fang pair; 197 (c.i. = 0.25; 0 → 1), angular reaching posterior end of lower jaw; 216 (c.i. = 0.25; 0 → 1), posterodorsal process of posterior coronoid contributing to highest point of lateral margin of adductor fossa; 231 (c.i. = 0.143; 0 → 1), interclavicle wider than long; 239 (c.i. = 0.111; 0 → 1), humerus with distinct supinator process projecting anteriorly; 247 (c.i. = 0.2; 0 → 1), humerus with expanded proximal and distal ends; 294 (c.i. = 0.25; 0 → 1), trunk pleurocentra fused middorsally; 296 (c.i. = 0.125; 0 → 1), trunk neural spines fused to centra.

Several recently described ‘reptiliomorph’ taxa from the Mississippian deserve additional comment. Eldeceoon (Smithson, 1994) and Silvanerpeton (Clack, 1994c), both from the uppermost Viséan of Scotland, are similar to stratigraphically younger embolomeres, and may indeed be the latter’s plesiomorphic sister taxa. Further preparation of the Eldeceoon and Silvanerpeton material is likely to illuminate character distribution patterns at the base of the ‘reptiliomorph’ radiation. A third Mississippian tetrapod, Casineria (Paton et al., 1999) from the upper Viséan of Scotland, might represent a more derived amniote than Eldeceoon and Silvanerpeton. Casineria was initially excluded from our data set because the large number of missing entries (86.5% of total number of characters) indicated that it would behave as a ‘rogue’ taxon. This was confirmed by a parsimony run of the original data set after inclusion of Casineria. The resulting 2208 most parsimonious trees at 1407 steps yield a mostly unresolved strict consensus, although the temnospondyl–lissamphibian relationships...
are the same as those in the original analysis (including the branching sequence of temnospondyl taxa and the position of *Eucritta* at the base of the lissamphibian stem-group). Conversely, all stem-group tetrapods crownward of *Tulerpeton*, and several plesions in the amniote stem-group are collapsed into a large polytomy. Inspection of the Adams consensus reveals a far less dramatic pattern of sister group relationships by relocating ‘... taxa in conflicting positions ... to the most inclusive node that they have in common among the fundamental cladograms’ (Kitching et al., 1998: p. 199).

Such relocations affect, among others, *Acherontiscus* (joining colosteids in an unresolved node between *Tulerpeton* and *Crassigyrinus*) and, unsurprisingly, *Casineria*. Loss of resolution also affects, in part, microsaur. In the Adams consensus, *Casineria* forms a polytomy with a clade of diadectomorphs plus crown-amniotes and a clade of *Westlothiana* plus lepospondyls. Random scanning through different samples of trees from the pool of 2208 fundamental topologies shows *Casineria* in one or the other of four possible positions: (1) sister taxon to *Westlothiana* plus lepospondyls; (2) sister taxon of lepospondyls (this arrangement is retrieved in 77% of the fundamental trees, as shown by a 50% majority-rule consensus); (3) nested within crown-amniotes (e.g. as sister taxon to *Captorhinus* in some trees); (4) nested within microsaur (in several alternative positions within tuditanomorphs and microbrachomorphs).

Paton et al.’s (1999) conclusions regarding the affinities of *Casineria* are partly supported by the present study. Both analyses fail to resolve the position of *Casineria* relative to such diverse taxa as basal crown-amniotes, *Westlothiana* and (in the present study) microsaur. Clearly, a more precise phylogenetic assessment of this tetrapod is not possible in the absence of cranial and more complete postcranial material. Available evidence from limb proportions, shape of the ilium, configuration of the vertebral centra and ribs suggest that *Casineria* should be regarded as a ‘reptiliomorph’ of uncertain phylogenetic affinities.

(d) The affinities of *Westlothiana*

Westlothiana (Fig. 6, lower right sector) is prominent because it combines generalized amniote-like features with lepospondyl characters. The two current interpretations of the phylogenetic position of *Westlothiana*, regarded either as a primitive amniote (Smithson, 1989; Smithson & Rolfe, 1990; Smithson et al., 1994) or as the most crownward plesion in the tetrapod stem-group (Laurin & Reisz, 1999), are contrasted with the hypothesis of relationships presented here (Fig. 5; see also Clack, 2002). According to Smithson et al. (1994), *Westlothiana* branches from the amniote stem between seymouriamorphs and diadectomorphs. Smithson et al.’s (1994) hypothesis is compatible with our results, except for the fact that *Westlothiana* is basal to a lepospondyl clade. Tree branch manipulation within MacClade shows that relocating *Westlothiana* between seymouriamorphs and clade including diadectomorphs plus crown-amniotes requires fewest additional steps (four) compared with alternatives. The position of *Westlothiana* in the shortest trees is supported by 14 character-state changes. Most of these are, however, homoplastic and/or based on optimization of missing or inapplicable entries: 27 (c.i. = 0.2; 0 → 1), portion of lacrimal lying anteroventral to orbit abbreviated; 49 (c.i. = 0.125; 0 → 1), total width of postparietal smaller than four times its length; 82 (c.i. = 0.333; 0 → 1), presence of kink in anteromedial margin of postorbital; 116 (c.i. = 0.286; 4 → 0), mandibular canal totally enclosed; 141 (c.i. = 0.5; 1 → 0), absence of transverse flange of pterygoid; 163 (c.i. = 0.5; 0 → 1), exoccipitals forming with basioccipital a concave, continuous and strap-shaped articular surface; 170 (c.i. = 0.25; 1 → 0), absence of postero-laterally directed, ridge-like thickenings (ridges ending in basal tubera) on basal plate of paraphenoid; 215 (c.i. = 0.167; 1 → 0), posterior coronoid not exposed in lateral view; 235 (c.i. = 0.25; 0 → 1), absence of glenoid foramen on scapulocoracoid; 255 (c.i. = 0.167; 1 → 0), length of humerus greater than that of two and a half mid trunk vertebrae; 267 (c.i. = 0.143; 1 → 0), absence of a distinct rugose area on the fourth trocanter; 312 (c.i. = 0.25; 0 → 1), height of neural arch in midtrunk vertebrae smaller than the length between pre- and postzygapophyses; 314 (c.i. = 0.25; 0 → 1), presence of no more than four digits in manus; 315 (c.i. = 0.333; 1 → 0), absence of five digits in manus.

In Anderson’s (2001) analysis, the microsaur *Utahrpeton* is identified as the most basal lepospondyl. Aside from considerations of the status of microsaurs (discussed further below), it is noteworthy that *Utahrpeton* and *Westlothiana* are similar in several respects. Comparisons between these two taxa are necessarily limited by their poor preservation. However, they resemble each other in the shape and relative proportions of the bones in the preorbital region of the skull, in the morphology of the mandible, in the vertebral construction, and in the shape of the puboischiadic plate (especially with regards to the ischium/pubis length ratio). Some of these features are also found in several microsaur taxa, especially primitive tuditanomorphs. Major differences between *Utahrpeton* and *Westlothiana* (e.g. in the morphology and proportions of limb elements) may reflect in part the immature condition of *Utahrpeton*.
The early tetrapod relationships revisited

283

(Carroll et al., 1991; Carroll & Chorn, 1995). The amniote affinities of microsaurs [e.g. Olson, 1962; Vaughn, 1962; Brough & Brough, 1967; but see also Romer (1950), Carroll & Baird (1968), Carroll & Gaskill (1978), and references therein] are also supported by Paton et al.’s (1999) analysis, although the latter includes only a limited sample of microsaurs.

Taken together, these observations offer an alternative perspective on the significance of *Westlothiana* for our understanding of the evolutionary history of primitive amniotes. The conjectured amniote or microsaur affinities of *Westlothiana* are no longer mutually exclusive. In fact, *Westlothiana* now appears as something of a keystone taxon, contributing to a more inclusive and explanatory hypothesis of early amniote diversity. It seems that, early in amniote history, certain terrestrial forms became elongate (although not necessarily small, contra Carroll, 1996) and displayed skink-like overall body proportions, similar to those of certain later microsaurs (e.g. rhynchonkids, ostodolepids and, possibly, gymnarthrids). Such proportions might be interpreted as adaptations to a burrowing life-style, at least in some of the above-mentioned taxa.

(e) The status of microsaurs

Our scheme of relationships supports microsaur paraphyly (Fig. 5; see also lower mid-right sector in Fig. 6), but differs from Anderson’s (2001) analysis in the branching order of the tuditanomorph families as well as in the fact that microbrachiomorphs other than brachystelechids form a clade. This clade (admittedly a poorly supported one) is the sister taxon to remaining lepospondyls. Brachystelechids are paired with a monophyletic tuditanomorph assemblage. The arrangement of tuditanomorphs mostly agrees with Schultze & Foreman’s (1981) and Milner’s (1993) hypotheses. There are, however, some differences between those studies and the present result. First, we found no evidence for a monophyletic Tuditanidae as defined by Carroll & Gaskill (1978), although this may be due, in part, to limited character choice and poor preservation of *Tuditanus* (Carroll & Baird, 1968). *Tuditanus*, Pantylidae and Asaphhestera are progressively more closely related to other tuditanomorphs. Second, Hapsidopareiontidae are paraphyletic, with Saxonerpeton and Hapsidopareion as successive sister taxa to a clade including ostodolepids, rhynchonkids and gymnarthrids. Hapsidopareiontids, ostodolepids and gymnarthrids have emarginated cheeks (character 112). The greater or lesser degree of emargination in hapsidopareiontids and ostodolepids, respectively, may represent a trend towards acquisition of a secondarily closed and solid cheek, like that observed in the rhynchonkid-gymnarthrid clade [possibly adapted to a burrowing life-style (Carroll & Gaskill, 1978; Milner, 1993)]. Among gymnarthrids, *Cardiocephalus* shows a rather shallow emargination, the presence of which was disputed by Carroll & Gaskill (1978). The configuration of the cheek region of *Cardiocephalus* is comparable to that of ostodolepids. ACCTRAN optimization shows that the emargination of *Cardiocephalus* is convergent with that of hapsidopareiontids and ostodolepids. Cheek morphology varies in gymnarthrids. Thus, *Euryodus* and *Sparodus* display a conventional cheek with a straight ventral margin, whereas *Pariotichus* and *Cardiocephalus* show a shallow cheek embayment (Carroll & Gaskill, 1978; Schultze & Foreman, 1981; Carroll et al., 1998).

(f) The aistopod-nectridean clade

The present analysis retrieves a scincosaurid-diplodouculid clade (Fig. 5; see also upper mid-right sector in Fig. 6) – in agreement with A. C. Milner’s (1980) and Milner’s (1993) hypotheses – and an aistopod-uurocordylid clade. Only two extra steps are required to reconstruct a monophyletic Nectridea or to place aistopods as sister taxon to diplocaulids. Tree length increases by 11 steps when the nectridean genera are arranged as in Anderson’s (2001) analysis (constraining nectrideans to be monophyletic but without changing the position of lysorophids and aistopods) and by 17 steps when lysorophids and aistopods are sister group to diplocaulids [Anderson’s (2001) topology]. The present work supports in part Thomson & Bossy’s (1970) concept of Holospondyli, but forces us to explore further characters that may re-establish nectridean monophyly. An emended diagnosis of nectrideans that takes into account the position of aistopods does not seem to be warranted. However, the possibility that aistopod ancestry is rooted into basal nectrideans cannot be entirely ruled out. If a tree topology is reconstructed that matches Anderson’s (2001; Fig. 3) arrangement of lepospondyl taxa down to genus level (including the position of caecilians among derived tuditanomorphs), then tree length increases by 55 steps, and the tree is a significantly worse fit for the data than the most parsimonious trees ($P<0.0001$ for Templeton, Kishino–Hasegawa and Winning-sites tests). Similar statistical test results are obtained if a further constraint is imposed on Anderson’s (2001) topology by maintaining his arrangement of lepospondyls but forcing lissamphibian monophyly at a deeper level (i.e. with caecilians’ ancestry rooted into lepospondyls, and salientians’ and caudates’
ancestry rooted into dissorophoid temnospondyls; see also discussion in Milner, 1988, 1993). The new constraint entails 85 extra steps.

The aístopod-nectridean clade is supported by the following character-state changes (several of which represent optimized missing entries): 16 (c.i. = 0.067; 1→0), prefrontal less than three times as long as wide; 136 (c.i. = 0.091; 1→0), ectopterygoid without denticles; 138 (c.i. = 0.125; 1→0), ectopterygoid with tooth row; 282 (c.i. = 0.333; 1→0), absence of elongate postero-dorsal flange in most trunk ribs; 286 (c.i. = 0.5; 0⇒1), presence of extra articulations above zygapophyses in at least some trunk and caudal vertebrae; 287 (c.i. = 1; 0⇒1), neural and haemal spines rectangular to fan-shaped in lateral view; 288 (c.i. = 1; 0⇒1), neural and haemal spines facing each other dorsoventrally; 289 (c.i. = 0.5; 0⇒1), haemal spines fused to caudal centra; 296 (c.i. = 0.125; 0⇒1), neural spines of trunk vertebrae fused to centra; 311 (c.i. = 0.5; 1⇒0), absence of capitular facets on posterior rim of vertebral midtrunk centra.

The sister group relationship between aístopods and urocordylids is based on five character-state changes (again, several reversals and optimized missing entries are implied within the clade): 63 (c.i. = 0.25; 1⇒0), presence of supratemporal; 104 (c.i. = 0.105; 0⇒1), interorbital distance smaller than maximum orbit diameter; 137 (c.i. = 0.2; 1→0), ectopterygoid longer than palatine; 267 (c.i. = 0.143; 0→1), presence of distinct rugose area on fourth trochanter; 290 (c.i. = 1; 0→1), presence of extra articulations on haemal spines.

Acherontiscus is an adelospondyl

As many as 14 characters indicate a sister group relationship between *Acherontiscus* and adelospondyls: 13 (c.i. = 0.143; 0⇒1), nasal length less than one-third the frontal length; 38 (c.i. = 0.143; 0→1), anterior margin of frontal deeply wedged between postero-lateral margins of nasals; 67 (c.i. = 0.25; 0→1), absence of tabular as separate ossification; 77 (c.i. = 0.333; 0⇒1), postorbital excluded from margin of orbit; 86 (c.i. = 1; 0⇒1), single squamosotabular in the position of squamosal and tabular; 104 (c.i. = 0.105; 0→2), interorbital distance subequal to maximum orbit diameter; 107 (c.i. = 0.125; 2→0), position of pinnae foramen behind interparietal suture mid point; 115 (c.i. = 0.286; 4⇒1), lateral line system on skull roof mostly enclosed, with short sections in grooves; 116 (c.i. = 0.286; 4→3), mandibular canal entirely in grooves; 128 (c.i. = 0.067; 0→1), palatine with denticles; 151 (c.i. = 0.25; 0→1), distinct anterior digitiform process of palatal ramus of pterygoids; 167 (c.i. = 0.5; 0→1), basioccipital circular and depressed; 191 (c.i. = 0.143; 1→0), presence of postpleural; 281 (c.i. = 0.5; 0→1), presence of spur-like postero-dorsal processes in at least some trunk ribs. Additional characters from the mandible and postcranial skeleton are currently being examined in conjunction with a revision of *Acherontiscus*. We found a remarkable array of similarities (proportions of several skull roof bones; vertebral and rib morphology) between *Acherontiscus* and adelospondyls, on one side, and colosteids, on the other. We were, therefore, interested to discover that only five additional steps are required to shift the *Acherontiscus*-adelospondyl clade retrieved in the original parsimony run to a stem-tetrapod position, as sister taxon to colosteids. This topology does not represent a significantly worse fit of the data than the fundamental trees (Templeton test: *P* = 0.3532; Winning-site test: *P* = 0.4583; Kishino–Hasegawa test: *P* = 0.354; the results are based on comparisons between the first tree obtained from the original analysis and a constrained tree in which the clade *Acherontiscus* plus adelospondyls is sister group to colosteids; comparisons with additional selected trees [10, 20, 30, 40, 50, 60] also imply values of *P* ≫ 0.05). In the light of such findings, we are exploring the significance of additional characters in evaluating the question of lepospondyl monophyly and the affinities of adelospondyls (see also below). If independently corroborated by other characters, such a hypothesis of relationships suggests that tendency towards body elongation and limb reduction/loss occurred early in the evolutionary history of tetrapods, and was acquired convergently in several crown-group lineages (e.g. microsaurs; embolomeres; urocordylids; aístopods).

h) The position of lysorophids

The highly specialized lysorophids share characters with one or more representatives of various lepospondyl groups, although they are generally considered to be closely related to microsaurs (Wellstead, 1991; Carroll et al., 1998). Several cranial characters of *Brachydectes* resemble those of *Batropetes* (Carroll & Gaskill, 1978; Carroll, 1991a). However, placing *Batropetes* as sister taxon to *Brachydectes* requires nine steps. This topology is only slightly worse than the most parsimonious trees, although the level of significance is not high (Templeton test: *P* = 0.0389; Winning-sites test: *P* = 0.0636; Kishino–Hasegawa test: *P* = 0.0388). Nine steps are also required to place lysorophids as sister taxon to aístopods as in Anderson’s (2001) analysis (again, with a low level of significance).
Early tetrapod relationships revisited

We were interested to compare our tree topology (Fig. 4), with particular reference to the position of lysorophids, with Laurin & Reisz’s (1997, 1999) and Laurin’s (1998a–c) preferred topology (Fig. 1D), in which lysorophids are the closest relatives of crown-group lissamphibians. To this purpose, we carried out three separate exercises, in which taxa were rearranged in order to match as closely as possible Laurin & Reisz’s (1997, 1999) and Laurin’s (1998a–c) preferred topology. For simplicity, tests were performed using Laurin & Reisz’s (1999) tree, since their study supersedes those of Laurin & Reisz (1997) and Laurin (1998a–c).

In the first exercise, we kept intrinsic relationships within major groups mostly unaltered, but rearranged such groups according to the branching sequence favoured by Laurin & Reisz (1999). In particular, *Rhynchonkos*, *Batropetes* and *Brachydectes* were placed as a series of progressively more crownward plesions on the lissamphibian stem-group. The new arrangement entails 74 additional steps and is a considerably worse fit for the whole character set than the most parsimonious trees (*P* < 0.0001 for Templeton, Winning-sites and Kishino–Hasegawa tests).

In the second exercise, our taxon sample was stripped down to resemble Laurin & Reisz’s (1997, 1999) and Laurin’s (1998a–c) taxon matrix (except for the exclusion of living groups and of the genus *Tersonius*; see above). All taxa belonging to a given group were kept in the analysis if such a group was represented by a supraspecific OTU in Laurin & Reisz’s (1999) dataset (e.g. Gephyrostegidae; Aiptopoda; Nectridea). The reduced matrix yielded 24 equally parsimonious trees at 985 steps (*CI* = 0.3326; *RI* = 0.648; *RC* = 0.2296) supporting a derivation of lissamphibians from dissorophoids. Nine of these trees were compared with Laurin & Reisz’s (1999) topology. In all cases examined, their favoured branching pattern represents a considerably worse fit for the total data than the topology retrieved from the original parsimony run (significance at *P* < 0.0001 for Templeton, Winning-sites and Kishino–Hasegawa tests). The strict consensus of the 24 fundamental trees resembles that of the original analysis (Fig. 4), except in the following features: (1) embolomerses and gephyrostegids are sister groups, as in Laurin & Reisz (1999); (2) seymouriamorphs are paraphyletic, with *Seymouria* and *Kollasia* as successive plesions on the amniote stem-group; and (3) *Westlothiana*, *Batropetes*, *Rhynchonkos*, *Pantylus* and *Brachydectes* are successively more closely related to a clade including, proximodistally, *Scincosaurus*, diplocaulids, urocordylids and a monophyletic adelospondyl–aiptopod group.

In the third exercise, we constrained crown-lissamphibians (without albanerpetontids) to appear as sister group to lysorophids without changing the relationships of the other taxa. When we compared the resulting tree (at 22 extra steps) with the fundamental cladograms, we found significant differences (*Templeton test: *P* = 0.0008; Winning-sites test: *P* = 0.0013; Kishino–Hasegawa test: *P* = 0.0007). However, it is important to note that if albanerpetontids are grouped with crown-lissamphibians, and this clade is placed as sister group to lysorophids, then tree length increases by only 10 steps, and the new topology is not fundamentally different from the shortest cladograms overall (*Templeton test: *P* = 0.1736; Winning-sites test: *P* = 0.2207; Kishino–Hasegawa test: *P* = 0.174). As explained below (see Section VII.7), this result depends upon the unstable ‘balance’ between different character sets that support alternative, conflicting, positions for crown-lissamphibians. Specifically, the character signal supporting the lissamphibian-dissorophid relationship is diluted by the pervasive noise associated with a host of reversals and ‘absence’ features (especially cranial features). In fact, albanerpetontid crania, like lysorophid examples, include unusually few bones, and, despite gross morphological differences, we argue that it is the apparent shared pattern of simplification that forces these taxa together.

(4) Reweighted analysis

Reweighting characters by their consistency index values (best fit) yields one tree (*CI* = 0.4068; *RI* = 0.7666; *RC* = 0.3279; Fig. 7) which differs from the fundamental trees (consensus in Fig. 4) in two main respects. First, *Crassigyrinus* and *Whatcheeria* are sister taxa and branch from the tetrapod stem between *Tu- lerpeton* and colosteids. We strongly suspect that this reweighting procedure reveals a likely new clade of stem-tetrapods. *Crassigyrinus* has long been considered as a ‘peculiar aberrant form’ (Milner et al., 1986; p. 4), but at least some of these peculiarities are now emerging as possible synapomorphies for a discrete, *Whatcheeria*-like assemblage of archaic Mississippian forms with a plausible Late Devonian origin (see also Clack, 2002). Second, baphetids and *Eucritta* are sister taxa (cf. Clack, 2001) and form the most crownward stem-tetrapod plesion. With *Eucritta* snapped to the baphetids, edopoids assume the most basal position on the lissamphibian stem, thereby emphasizing the extreme patchiness of the early lissamphibian record (Milner & Sequeira, 1998). It is also noteworthy that the reweighted analysis resolves the branching pattern of derived temnospondyls in favour of a sister group relationship between a clade encompassing *Amphibamus* plus *Dolcerpeton* and a clade of branchiosaurids with
Fig. 7. Single tree deriving from reweighting characters by their consistency index (c.i.) values (best fit).
Leptorophus as sister taxon to Apatelon plus Schoenfelderpeton. This broader group is paired with albanerpetontids plus crown-lissamphibians. Progressively less crownward taxa include Micromelerpeton, Eoscopus and Platyrhinops.

(5) Cranial data

The results of a PAUP* analysis applied to cranial and mandibular characters were examined in order to assess the influence of different character partitions on tree topology. However, the postcranial character set could not be processed successfully, due to time- and memory-consuming computer requirements.

The all-cranial version of the data set produced 1188 fundamental trees at 1022 steps (CI = 0.2485; RI = 0.6787; RC = 0.1707). Despite the extremely poor resolution of a strict consensus, the monophyletic status of several groups is corroborated, although the arrangement of several taxa departs significantly from that of the original analysis. An Adams consensus (Fig. 8) reveals the instability of taxa including Acherontiscus, Caerorhachis, Whatcheeria, adelospondyls, astotopods, lycorhachids and urocordylids. Also noteworthy is the unstable position of various 'reptiliomorphs' (e.g. podials, lysorophids and urocordylids). Also noteworthy is the unstable position of various 'reptiliomorphs' (e.g. Gephyrostegus, Gymnarthrus, Batropetes, and limnoscelids). On the lissamphibian stem, the relationships of the most crownward temnospondyls differ from those of the original parsimony run in that Broiliellus is sister taxon to crown-lissamphibians. Progressively less crownward taxa include: (1) a clade formed by Amphibamus and Doleserpeton; (2) Platyrhinops; (3) a clade formed by Eoscopus and Micromelerpeton as sister taxa to branchiosaurids. As in the reweighted analysis (using the complete character set; Fig. 7), the cranial data support the polyphyly of amphibamids.

The most striking result of the cranial analysis is the identification of two distinct monophyletic groups of lepospondyls in several trees. The first group consists of microsaur, placed as sister taxon to Westlothiana on the amniote stem, in agreement with the original parsimony run. The second group consists of a heterogeneous assemblage of astotopods, lycorhachids, adelospondyls and nectrideans, forming the sister group to colosteids in at least some trees.

In the first group, pantyliids are paired with gymnarthrids, as in Anderson’s (2001) cladogram, whereas Odonterpeton and Batropetes form a clade between Saxnerpeton and Hapsidopareon. The pantyliid–gymnarthrid sister group relationship is supported by their similar tooth morphology and by their general skull proportions. The match between the cladogenetic event sequence and the stratigraphical appearance of microsaur families is better than that obtained when using the total data set. The pairing of Odonterpeton and Batropetes is rather unexpected. However, characters in common to both genera are the robust aspect of the mandible and the sloping of the posterior cheek margin. The material of Odonterpeton is imperfectly known and requires thorough redescription.

A stem-tetrapod position for various lepospondyls, such as those within the second group, has been proposed by Milner (1993), who speculated that nectrideans might be progenetically dwarf relatives of
colosteids. The large size of certain long-horned diplidouculids would, we assume, result from subsequent peramorphosis. Body elongation, increase in vertebral count and morphological uniformity, and limb reduction/loss are often associated with swimming and/or burrowing lifestyles. Aistopods may represent the very nadir of these morphological trends.

We explored further the effects of placing lepospondyls other than microsaurids in a stem-tetrapod position (see also above for a discussion of adelospondyls). If the adelospondyls-nectrideans-aistopods clade deriving from the original parsimony run (i.e. using the complete set of characters) is grafted to colosteids in order to match the results of the all-cranial analysis, the resulting tree topology is found to be only a slightly worse fit for the data than the most parsimonious cladograms overall (Templeton test: $P = 0.0197$; Winning-sites test: $P = 0.01$; Kishino–Hasegawa test: $P = 0.0224$; the results are based on comparisons between all trees obtained from the original analysis and a constrained tree forcing lepospondyls other than microsaurids into a stem-tetrapod position). The hypothesis that some lepospondyl lineages diversified early in tetrapod history, before the lissamphibian-annioate split, cannot be entirely ruled out. However, this hypothesis requires independent testing using several new characters, and will be dealt with elsewhere.

(6) Deletion of lower jaw characters

To assess the impact of lower jaw morphology on cladogram topology, we ran a cladistic analysis excluding mandibular characters. The strict consensus of 2160 trees at 1220 steps (CI = 0.2322; RI = 0.6737; RC = 1.607; Fig. 9) is only slightly less resolved than that based on the total data set. It differs from the latter in the following respects: (1) Ventastega and Whatcheeria are sister taxa and form the most crownward plesion on the tetrapod stem-group; (2) Eucacilia plus baphetids form the most basal clade in the lissamphibian stem-group; (3) Edops and cochleosaurids form an unresolved node with higher temnospondyls; (4) Balanerpeton and trimerorhachoids likewise form an unresolved node with higher temnospondyls; (5) crown-lissamphibians are more deeply nested into the derived portion of the temnospondyl tree, and form the sister group to a fully resolved clade in which amphiambids are a paraphyletic assemblage relative to a micromelerpetontid-branchiosaurid clade; (6) within crown-lissamphibians, relationships are resolved in favour of a salientian-caudate clade, with Karaurus and Valdivortan as sister taxa; however, albenerpetontids and Eucacilia are collapsed in a polytomy with the remaining lissamphibians; and (7) most tuditanomorphs are collapsed in a large polytomy, except for ostodolepids and pantylids; loss of resolution among tuditanomorphs is due to the unstable positions of Batropetes, Hapsodaparion, Rhynchonkos and Tuditanus.

Ahlberg & Clack (1998) have recently discussed the results of a cladistic analysis of early tetrapods based on lower jaw features (see also Daelescher, 2000). The relationships of several taxa in their work differ

![Fig. 9. Strict consensus of 2160 equally parsimonious trees obtained after removal of lower jaw characters.](image-url)
substantially from those of previous analyses. One of
the most unexpected results is the fact that such tradi-
tional groups as temnospondyls and ‘anthracosaurs’
appear as polyphyletic arrays of taxa. The conflict be-
tween the phylogenetic signal provided by the lower
jaw and the cladogenetic pattern based on other data
may be rooted into the paucity of mandibular char-
acters (see also comments in Ruta et al., 2001). Although
it is possible to identify, as Ahlberg & Clack (1998) did,
a series of morphological trends affecting the evolution
of lower jaws in passing from stem-tetrapods to basal
crown-tetrapods, the degree of character resolution
may be insufficient to yield hypotheses of relationships
(both between and within groups) that match those
based on other skeletal features. Thus, while a host
of cranial and postcranial features support a single
origin for temnospondyls, their lower jaws change little
within various lineages in this group. Differences
between such lineages are most prominent in the
relative size and position of Meckelian foramina, and
in the proportions of infradentaries and coronoids [see
and Damiani (2001)]. The observation that certain
primitive characters (e.g. parasymphysial plate) are
retained in a variety of otherwise very distinctive groups
(e.g. baphetids, colosteids, some embolomeres) sug-
ests that the lower jaw underwent modifications at a slower
rate than other parts of the skeleton. Interestingly, such
modifications appear to be largely decoupled from
changes that affected the skull roof, palate and post-
cranium both in taxa spanning the fish–tetrapod
transition and in some basal members of the crown-
group. At higher levels of the tetrapod hierarchy, and
especially among amniote-related taxa, important
modifications are clustered consistently around specific
cladogram nodes (e.g. number and proportions of coro-
noids; extensions of mesial laminae of infradyneal
bones; enlargement and reduction in number of
Meckelian foramina; decrease in the curvature of the
posterior two-thirds of the lower margin). As Ahlberg &
Clack (1998: p. 42) pointed out, ‘… it is curious to
observe that the trends towards reduction of the cor-
onoids and the endoskeletal components of the jaw
continue in the synapsids, but not the other amniote
lineages. A modern lizard or crocodile jaw is still in
most respects comparable to that of the Early Permian
Eoscaptorhinus’. On the lissamphibian stem, on the other
hand, modifications were less drastic than in the am-
niote stem – hence the overall similarities between the
lower jaws of various basal and derived temnospondyls
(regardless of absolute size). Furthermore, although
the lower jaws of several crown-lissamphibians are
highly derived relative to those of their Palaeozoic
has shown that identification of homologous features is
possible when embryological data are combined with
sequences of growth stages recovered from the fossil
record. Intriguingly, Schoch’s (1992) analysis of mor-
phological changes in the development of two different
species of Apatosaurus reveals striking similarities between
this dissorophoid and certain primitive salamanders,
e.g. at the level of the parasphenoid, quadrate ramus
of pterygoid and vomer.

(7) Reverse weighting

Trueman’s (1998) reverse weighting procedure assists
searches for conflicting signals within data sets. The
method is based on successive removals of unambigu-
ous synapomorphies (i.e. characters with c.i. = 1)
following parsimony runs. Synapomorphy stripping
should reveal residual or masked phylogenetic signal
within the remaining character set. We note that
PAUP* calculates c.i. values on the basis of each indi-
vidual tree, and not on performance of characters
across the entire tree set (providing that several trees
are found). It is thus possible that characters with a c.i.
of 1 may support nodes that do not occur in a strict consen-
sus. Therefore, we propose that such characters
should be retained for subsequent rounds of reverse
weighting. While these characters perform as if signal-
consistent within a particular tree, they exhibit
homoplastic distribution across the entire tree set. Con-
sequently, they remain a source of alternative phylo-
genetic patterns, and any list of characters with a c.i. of
1 should be plotted on a strict consensus of the entire
tree set (including the particular tree from which the
c.i.’s were obtained). This seems to be a more dis-
criminatory procedure than that applied by other
workers (see Rieppel, 2000).

Fifty-five characters identified as unambiguous
synapomorphies at the end of the original parsimony
run were excluded (1, 4, 8, 19, 22, 26, 31, 52, 54, 55,
65, 72, 76, 86, 87, 92, 99, 108, 111, 152, 157, 161, 162,
164, 166, 185, 199, 211, 217, 223, 225, 226, 227, 236,
241, 260, 263, 264, 271, 274, 275, 277, 278, 283,
The new, reduced data set yielded 1608 trees at 1341
steps (CI = 0.2266; RI = 0.6543; RC = 0.1512), a strict
consensus of which is very poorly resolved. The most
important feature of these trees is the fact that crown-
lissamphibians and albanerpetontids now appear to be
nested within lepospondyls. Remaining portions of the
tree, however, remain largely unchanged. A selected
tree shows that the position of lissamphibians is ac-
counted for by reversals as well as by optimizations of
missing characters. An agreement subtree shows that albanerpetontids plus crown-lissamphibians maintain the same relationships with adelospondyls in all trees, with urocordylids, diplocaulids, Scincosaurus, pantylids and a heterogeneous microsaur clade (with micro-brachomorphs nested within remaining tuditanomorphs) as progressively more distantly related taxa. Also evident in the agreement subtree is the paraplectic status of gephyrostegids, seymouriamorphs and diadectomorphs, and the fact that edopoids branch from the temnospondyl tree between Balanerpeton and cryopoids. A further five characters (167, 210, 301, 302, 303) were identified as unambiguous synapomorphies in a selected tree obtained from the reduced data set, but no further analysis was carried out due to computation time (the further five characters are unambiguous synapomorphies in some distal portions of the cladogram, and their removal is likely to produce further decrease in the resolution of a strict consensus). Deep nodes in the strict consensus appear to be entirely supported by homoplastic changes.

Character reversals and optimized missing entries have a profound effect on the analysis. They introduce diffused ‘noise’ which accumulates when sets of ‘presence’ characters, such as certain lissamphibian-temnospondyl synapomorphies, are removed. These results show that evidence for a lissamphibian-dissorophoid clade, based on the whole data set, is consistently stronger than the alternative hypothesis of a sister group relationship between lissamphibians and lepospondyls.

(8) Chronology

A minimum hypothesis of the timing of the principal events in tetrapod phylogeny, as implied by the cladogram in Figs 5 and 6, is shown in Fig. 10. The date of the crown-group node is effectively pegged by the occurrence of the earliest known astropod Lethiscus (Wellstead, 1982). This material is slightly older than the late Viséan East Kirkton locality (Rolfe, Clarkson & Panchen, 1994), and thus in excess of 338 million years before present. A quick inspection of Fig. 10 shows a proliferation of taxa during the Viséan, but this pattern results from, on the one hand, the problematic nature of the few known scattered remains of Touraisian tetrapods (Clack & Carroll, 2000), and on the other, the disproportionate influence of key faunas, such as East Kirkton (Rolfe et al., 1994). It is noteworthy that all recent phylogenetic analyses identify basal crown taxa within the diversity of mid-Viséan tetrapods, and it therefore appears that the proposed date for the crown-node (on the basis of morphological data) is unusually robust. Subsequent changes appear more likely to result from new fossil discoveries than from new or alternative phylogenies (cf. Laurin, 1998b; Paton et al., 1999). The inferred timing of the lissamphibian-amniote split falls some 20 million years short of the estimate derived from molecular data (Hedges, 2001); the significance or otherwise of this is discussed in greater detail elsewhere (Ruta & Coates, in press).

VIII. FUTURE RESEARCH

Despite the increase in early tetrapod data, numerous aspects of their evolutionary history remain obscure. The earliest phases of diversification of several groups, including those with an extensive fossil record (e.g. temnospondyls), are poorly understood. Furthermore, the earliest known members of various taxa display almost complete arrays of apomorphies found in later representatives (e.g. microsaurids; nectrideans; Carroll & Gaskill, 1978; A. C. Milner, 1980; Milner, 1993; Carroll et al., 1998), thus providing little information on their ancestry and sister taxon relationships. Some tetrapods show puzzling combinations of characters shared with members of two or more different groups (e.g. Caenorhachis; Crassigyrinus; Eucritta; Whatcheeria; Lombard & Bolt, 1995; Clack, 1996, 1998a, c, 2001; Bolt & Lombard, 2000; Ruta et al., 2001). Still others are extremely specialized from their first appearance in the fossil record (e.g. adelospondyls; aistopods; lyso-rophids; Wellstead, 1982, 1991; Carroll, 1998; Carroll et al., 1998). All of these observations, coupled with the vagaries of fossil preservation, suggest no imminent, unequivocal, solution to the problem of evaluating the phylogenetic position of several crucial taxa.

Recent research is beginning to shed new light on the anatomy and relationships of rare and problematic forms, such as lepospondyls (Carroll, 1998; Carroll et al., 1998; Anderson, 2001, in press; Anderson et al., 2001). Several issues related to lepospondyl interrelationships are likely to undergo extensive revision in the near future. Published analyses of lepospondyls reveal a disconcerting lack of agreement, to the point that almost any pattern of relationships has been proposed (Smithson, 1983; Panchen & Smithson, 1987; Milner, 1993; Carroll, 1995; Carroll & Chorn, 1995; Laurin & Reisz, 1997, 1999; Laurin, 1998a–c; Anderson, 2001). The most challenging task posed by lepospondyl studies consists of identifying good synapomorphies with other major groups. Comparisons between the results generated by different character set partitions (see above) show that much work is still needed to unravel the confounding signal produced by convergence. However, these comparisons already suggest that at least some of
the hypothesized sister group relationships may be correct (e.g. Thomson & Bossy, 1970; Wellstead, 1991).

Commonly held assumptions about the polarity of several characters in the most crownward part of the tetrapod stem-group are challenged by new discoveries (Clack & Finney, 1997; Clack, 2002). Future work on the earliest known Carboniferous faunas (Thulborn et al., 1996; Clack & Carroll, 2000) may provide further insight into the pattern of character distribution near the base of the crown-group.
Theories of lissamphibian origin, or origins, continue to be the source of considerable conflict. As Carroll & Bolt (2001: p.38A) have noted, the problem with certain recently published phylogenetic hypotheses (e.g. Laurin & Reisz, 1997, 1999; Laurin, 1998a–c) is that they ‘… support a monophyletic origin of the modern [lissamphibian] orders, but imply a large number of biologically improbable character reversals and an immediate common ancestor with very few characters shared with any of the derived orders’ (see also Carroll, 2001). Investigations of patterns of skeletal ossification in several derived temnospondyls (notably, dissorophoids), and comparisons with developmental data from modern as well as extinct lissamphibians (e.g. Schoch, 1992, 1995, 1998; Carroll, Kunst & Albright, 1999; Boy & Sues, 2000; Carroll, 2001; Carroll & Bolt, 2001; Chipman & Tchernov, 2002) provide a large amount of new morphological information that is likely to be incorporated in comprehensive, morphology-based cladistic analyses. Particularly challenging topics include the single or multiple origins of lissamphibians from among dissorophoids (Bolt, 1969, 1977, 1979, 1991; Lombard & Bolt, 1979; Bolt & Lombard, 1983; Milner, 1988, 1993; Trueb & Cloutier, 1991; Carroll, 2001; Carroll & Bolt, 2001; Dr A. R. Milner, personal communication to M. Ruta, 2001), and the ancestry of caecilians (review in Carroll, 2000).

Interrelationships of various putative stem-amniote groups remain controversial. The impact on phylogenetic reconstruction of several Permian and late Carboniferous forms (e.g. chroniosuchids; kotlassiids; nycteroleterids) cannot be properly evaluated without a detailed revision of their osteology. The morphological gap between diadectomorphs and primitive crown-amniotes is puzzling, despite the fact that several characters of the former foreshadow the condition of basal crown-amniotes (Berman & Sumida, 1990; Sumida & Lombard, 1991; Berman et al., 1992, 1998; Sumida et al., 1992; Sumida, 1997; Berman, 2000). Future research targeted at the most primitive ‘anthracosauroids’ (e.g. Clack, 1994c; Smithson, 1994) may yield new data on the early radiation of ‘reptiliomorphs’, with particular emphasis on the skeletal modifications that accompanied the transition from semiaquatic/aquatic (e.g. embolomeres) to more fully terrestrial forms (e.g. gephyrostegids; Solenodonsaurus). The position of Seymouriamorphs is interesting in this context. Although some of their characters appear to be more primitive than those observed in certain early terrestrial ‘reptiliomorphs’, this may simply reflect the paedomorphic or juvenile condition of some forms (e.g. discosauriscids). On balance, similarities between diadectomorphs and seymouriamorphs are striking, and point to a more derived placement of the latter on the amniote stem relative to embolomeres and gephyrostegids.

IX. CONCLUSIONS

(1) In an attempt to investigate conflicts between the most widely discussed hypotheses of early tetrapod relationships, we assembled a large data matrix encompassing character sets from each published study. This has not been a literature-based exercise. We have incorporated, where possible, original observations of numerous taxa spread throughout the major clades, as well as data from the redescriptions of Tulerpeton (Lebedev & Coates, 1995), Acanthostega (Coates, 1996) and Caerorhachis (Ruta et al., 2001). The results of our new analysis indicate a deep phylogenetic split between lissamphibian- and amniote-related groups. A series of Lower Carboniferous early tetrapods branch from the tetrapod stem. These include colosteoids, Crassigyrinus, Whatcheiria and baphetids, in order of increasing proximity to the crown-group. Some of these taxa (notably Crassigyrinus, Whatcheiria and baphetids) have been allied to amniotes in certain analyses, but their ‘reptiliomorph’ characters are now emerging as generalized tetrapod features (see also Clack, 2002). The tetrapod crown-group is bracketed at its base by Eucritta and Caerorhachis, notorious for their debated affinities (Holmes & Carroll, 1977; Milner & Sequeira, 1994; Coates, 1996; Clack, 1998a; Holmes, 2000) and for their curious mixture of features otherwise regarded as unique to mutually exclusive groups, such as baphetids, embolomeres and temnospondyls (Clack, 2001; Ruta et al., 2001).

(2) Despite the large number of ‘absence’ features seemingly shared by crown-lissamphibians and certain lepospondyls (notably, lysorophids), a sister group relationship between lissamphibians and dissorophoid temnospondyls best accounts for the distribution of putative synapomorphies in these two groups. Several alternative hypotheses of lissamphibian ancestry imply a worse fit of the total data. However, no specific dissorophoid can be identified as the nearest relative of crown-lissamphibians. Rather, these are paired with a heterogeneous clade including amphibamids, microlemperontids and branchiosaurids. Such an arrangement probably results from the fact that different lineages of dissorophoids approached the condition of basal lissamphibians independently (Milner, 1993). The pattern of sister group relationships in the crownward part of the temnospondyl branch re-emphasizes
the importance of dissorophoids in the debate about lissamphibian origin. The evolutionary implications of
these results have yet to be explored in depth. Initially
recognized patterns include the morphological con-
servatism of stem-lissamphibians relative to the diversity
of stem-amniotes. Comparisons between dissorophoids
and various living and extinct caudates show that
the latter appear as generalized in their postcranial and
cranial features as their supposed ancestors from
among derived temnospondyls (Bolt, 1969, 1977, 1979,
Cloutier, 1991; Schoch, 1992, 1995, 1998; Carroll,
2001). Most importantly, we have tried to show that
comprehensive treatments of the available evidence
from the fossil record, rather than the use of just some
key characters, can overturn hypotheses of relations-
ships based on clusters of ‘absence’ features. Alternative
patterns of relationships, based on a large proportion
of such features (e.g. Laurin & Reisz, 1997, 1999;
Laurin, 1998a–c), appear to be less informative with
regards to the ancestry of some or all of the lissam-
phibian orders. As explained by Carroll (2001, p. 1207),
Laurin & Reisz’s (1997, 1999) and Laurin’s (1998a–c)
hypothesized sister group relationship between lysor-
ophids and crown-lissamphibians relies upon some
characters that lycospondylids share ‘… with each of
the three groups [of lissamphibians]; greatly elongate
body with much reduced limbs in common with the
earliest known caecilian, a fenestrate skull, vaguely
comparable with those of frogs and salamanders, and
loss of many similar skull bones, but the total con-
figuration is that of a chimera that has no unique
derived characters in common with any of the indi-
vidual orders’.
(3) The branching sequence of stem-group amniotes
reveals a coherent series of internested character-state
changes leading up to the condition of basal crown-
amniotes. In particular, changes in body proportions
account for a progressive tendency towards the acquis-
tion of terrestrial habits (e.g. gephyrosteids; some
seymouriamorphs; diadectomorphs). The inter-
relationships of primitive amniotes are largely in
agreement with the conventional view that ‘anthracos-
aurs’ (i.e. embolomeres and gephyrosteids), seym-
ouriamorphs and diadectomorphs are successively
more closely related to crown-amniotes. However, the
analysis also shows Westlothiana and lepospondyls to be
amniote relatives, although support for lepospondyl
monophyly is weak.
(4) Cranial data are in conflict with total data with
regard to the position of lepospondyls other than micro-
saurs. The placement of microsaurs on the amniote
stem persists even when postcranial data are omitted.
The relationships of remaining lepospondyls change
significantly under these conditions, since they are re-
located on the tetrapod stem, as sister group to colos-
toids. Such an arrangement is not significantly worse
than the topology based on the whole character suite.
Importantly, it emphasizes similarities between colos-
toids and various lepospondyls (notably adelospondyls).
Additional characters may identify some of the lepo-
spondyls as stem-tetrapod offshoots.

X. ACKNOWLEDGEMENTS

For access to collections, exchange of photographic, artistic
and written documentation, use of facilities and many
invaluable discussions, we thank: Drs Andrew Milner and
Sandra Sequeira (School of Biological and Chemical Sci-
cences, Birkbeck College, University of London, UK); Dr
Jason Anderson (Department of Zoology, University of
Toronto, Mississauga, Canada); Dr David Berman (Section
of Vertebrate Paleontology, Carnegie Museum of Natural
History, Pittsburgh, USA); Dr Robert Carroll (Redpath
Museum, McGill University, Montreal, Quebec, Canada);
Dr Helen Chatterjee (Grant Museum of Zoology, University
College London, UK); Dr Jenny Clack (University Museum
of Zoology, University of Cambridge, UK); Dr Ross Da-
miani (Bernard Price Institute for Palaeontological Research,
University of the Witwatersrand, South Africa); Dr James
Gardner (Royal Tyrrell Museum of Palaeontology, Drum-
heller, Alberta, Canada); Dr Jonathan Jeffery (Institute of
Evolutionary and Ecological Sciences, University of Lei-
den, The Netherlands); Dr Jozef Klembara (Department of
Ecology, Comenius University, Bratislava, Slovakian
Republic); Dr Angela Milner and Ms Sandra Chapman
(Palaeontology Department, The Natural History Museum,
London, UK); Dr Sean Modesto (Section of Vertebrate
Paleontology, Carnegie Museum of Natural History, Pitts-
burgh, USA); Dr Roberta Paton (National Museums of
Scotland, Edinburgh, UK); Prof. Stuart Sumida (Depart-
ment of Biology, California State University at San Ber-
nardino, USA); Dr Anne Warren (Department of Zoology,
La Trobe University, Melbourne, Australia); Dr Adam Yates
(Communications, Department of Earth Sciences, University of Bristol, UK).
We are particularly grateful to Mr. Jack Conrad (Department of Organismal Biology and Anatomy, University of Chicago,
USA), Dr Andrew Milner and Prof. Stuart Sumida for their
constructive criticism of earlier drafts of this work. We are
indebted to Drs Jason Anderson and Jenny Clack for their
numerous insightful comments and editorial remarks and for
saving us from some major howlers. Dr Anderson kindly
supplied a pre-publication version of his work in press on
phlegethontiid aı¨stopods and shared with the senior author
invaluable information. This work was funded by BBSRC
Advanced Research Fellowship no. 31/AF/13042 awarded
to Michael I. Coates.
XI. REFERENCES

AMALITSKY, V. P. (1921). Seymouridae.

Early tetrapod relationships revisited

XII. APPENDIX 1. LIST OF SPECIMENS EXAMINED (FOR INSTITUTIONAL ABBREVIATIONS SEE THE RELEVANT LITERATURE)

XIII. APPENDIX 2. CHARACTER LIST

(1) Cranial skeleton

(a) Skull table

Premaxilla

1. PREMAX. Absence (0) or presence (1) of alary process. This and the following two characters describe conditions of the backward-pointing, triangular to digitiform processes of the postero dorsal margins of the premaxillae. These processes are found in many derived temnospondyls (e.g. some trimerorhachoids, eryopoids; dissorophoids) as well as in several living and fossil lissamphibians (Milner, 1990; Milner & Sequeira, 1994, 1998; Holmes et al., 1998). They either overlap the nasals (the latter often show impressions for the alary processes), as in several temnospondyls and lissamphibians, or form a butt joint with these, as in albanerpetontids (Gardner, 2001). The alary processes are here considered to be several from the postero dorsal nasal rami of the premaxillae, which appear remarkably well developed in several taxa, including lysorophids (Bolt & Wassersug, 1975) and captorhinids (Modesto, 1998), and conjoined along the dorsal skull midline. Ontogenetic shifts of the nasal rami in a mesial direction (and resulting obliteration of the intermaxillary space) has been documented in Discosauriscus austriacus (Klembara, 1997).
2. PREMAX 2. Alary process shorter than wide (0) or as long as/larger than wide (1). See character 1 above. In some temnospondyls (e.g. Doloserpeton, Micromelerpeton) and primitive lissamphibians (e.g. Kusshoerus, Valdorotriton), the alary processes are shaped like equilateral or isosceles triangles (Bolt, 1969; Ivakhnenko, 1978; Boy, 1995; Evans & Milner, 1996), whereas in others (e.g. Dendrerpeton), the processes are less well developed and extend backward only for a short distance (Holmes et al., 1998).

3. PREMAX 3. Alary process less than (0) or at least one-third as wide as premaxillae (1). See character 1 above. The alary processes can be rather small relative to the width of the premaxillae (e.g. Eryops; Sawin, 1941), or broad and only slightly less wide than the premaxillae (e.g. Apatosaurus; Schoch, 1992).

4. PREMAX 4. Premaxillae without (0) or with (1) flat, expanded anteromedial dorsal surface and marginal elongation. This is one of the characters used by Milner & Sequeira (1994, 1998) to characterize edopoids (see also Godfrey & Holmes, 1995). In edopoids, the anteromedial portion of the premaxillae is a broad, flat sheet of bone, and the bones show an elongate lateral margin bordering the snout.

5. PREMAX 7. Premaxillae more (0) or less than (1) two-thirds as wide as skull. This is a modified version of one of Gauthier et al.’s (1988b) characters, found ubiquitously among ‘reptiliomorphs’, and which characterizes also several lepospondyls and some primitive lissamphibians (e.g. Eocaecilia; Carroll, 2000). Narrow premaxillae, even in stem-amniotes showing broad and spade-shaped snouts (e.g. Dirosaurus; Klembara, 1997), contrast with the broad premaxillae of temnospondyls and several stem-tetrapods.

6. PREMAX 8. Mouth subterminal so that anteriormost surface of premaxilla faces ventrally: absent (0) or present (1). This character refers to the distinctly oblique anterodorsal surface of the premaxillae in several microsaurs (e.g. Batracerpeton; Cardiocephalus; Eurycodus; Microraner; Pantylus; Pelodosaurus; Rhynchosaurus; Carroll & Gaskill, 1978; Carroll, 1991a), even diadectomorphs (e.g. Limnoscelis; Williston, 1911; Romer, 1946; Heaton, 1980) and captorhinomorphs (e.g. Captorhinus; Fox & Bowman, 1966; Heaton, 1979). It conveys a pointed aspect to the tip of the snout, as described by Laurin (1998b), and may be related to burrowing habits, at least in some taxa.

7. PREMAX 9. Absence (0) or presence (1) of shelf-like premaxilla-maxilla contact mesial to tooth row on palate. In Ichthyostega (Jarvik, 1980, 1996), Crassigyrinus (Clack, 1996, 1998c) and Greererpeton (Smithson, 1982), the ventral surfaces of premaxilla and maxilla form a mesially projecting surface and the two bones contact each other in a mesial position relative to the marginal dentition. The distribution of this character conforms to that of recent cladistic analyses by Clack (1998c, 2001).

Anterior tectal
8. TEC 1. Presence (0) or absence (1) of anterior tectal. As pointed out by Clack (1998c), the distinction between the anterior tectal and the septomaxilla is disputed. When the two elements are scored as equivalent, following Clack’s (1998b) example, the results of a PAUP* analysis are identical to those of the original run. The scoring of both elements conforms to Clack’s (1998c, 2001) analyses, with Acanthostega and Ichthyostega scored as possessing an anterior tectal, but lacking a septomaxilla.

Lateral rostral
9. LAT ROS 1. Presence (0) or absence (1) of lateral rostral. As in the case of the anterior tectal (see character 8 above), we follow Clack (1998c, 2001) in coding for the presence of a lateral rostral in Ichthyostega [see also Jarvik (1980, 1996) and Carroll (1995)].

Septomaxilla
10. SPTMAX 1. Absence (0) or presence (1) of septomaxilla. As explained under character 8 above, the septomaxilla and anterior tectal are here treated as separate elements (Clack, 1998c, 2001), with Acanthostega and Ichthyostega scored as lacking a septomaxilla.

11. SPTMAX 2. Septomaxilla not a detached ossification inside nostril (0) or a detached ossification (1). The occurrence of a detached septomaxilla inside the nostril (i.e. this element is not part of the dermal skull roof) characterizes several derived temnospondyls and certain stem-amniotes (e.g. Dirosaurus, Limnoscelis, Seymouria) (White, 1939; Romer, 1946; Milner & Sequeira, 1994; Laurin, 1995, 1996b; Klembara, 1997).

Nasal
12. NAS 1. Absence (0) or presence (1) of paired dorsal nasals. At a post-panderichthyid level of organization, paired nasals are widespread in tetrapods (Panchen & Smithson, 1988; Carroll, 1995; Coates, 1996; Ahlberg, 1998; Clack, 1998c, 2001), except in those taxa (e.g. derived diplocaulid nectrideans) in which only one element is found in the position usually occupied by paired nasals in most other tetrapods (A.C. Milner, 1980; Bossy & Milner, 1998).

13. NAS 2. Nasals more (0) or less than (1) one-third as long as frontals. This is one of several characters describing patterns of elongation in the preorbital region of the skull roof. Its distribution in the taxa surveyed in this study is rather irregular. In adelospondyls, aistopods, colosteids, some microsaurs and certain urocoyliids, the nasals are greatly reduced in size relative to the
frontals. This is especially evident in adelospondyls, aistopods and colosteids.

14. \textbf{NAS} 5.\textit{ Absence (0) or presence (1) of condition: nasals broad plates delimiting most of the posterodorsal and mesial margins of nostrils and with lateral margins diverging abruptly anteriorly.} As defined here, this character describes the snout morphology in several dissorophoids and \textit{Karaurus} (Boy, 1972, 1974, 1978, 1985, 1986, 1987, 1995; Bolt, 1969, 1977, 1979, 1991; Ivakhnenko, 1978; Schoch, 1992), in which the nasals are not simply expanded and flat sheets of bones, but contribute to most of the posterodorsal and mesial margins of the nostrils. In addition, the anterior part of their lateral margins diverges markedly anterolaterally, so that the nasals increase abruptly in width anteriorly.

15. \textbf{NAS} 6. \textit{Partial/nasal length ratio less than (0) or greater than 1.45 (1).} This character refers to a pattern of skull roof bone proportions that matches in part the distribution of character 13 above, although its derived condition occurs sporadically in some lepospondyl groups (Smithson, 1982; Hook, 1983; Andrews & Carroll, 1991). This character diverges markedly anterolaterally, so that the nasals increase abruptly in width anteriorly.

16. \textbf{PREFRO} 2. \textit{Prefrontal less than (0) or more than (1) three times longer than wide.} Together with the previous character, the elongation of the prefrontals characterizes adelospondyls and colosteids (Smithson, 1982; Hook, 1983; Andrews & Carroll, 1991; Milner, 1993), but is found also in some representatives of other groups (e.g. aistopods, baphetids; embolomeres; temnospondyls; lycosorhaphids; microsaurs; albanerpetontids).

17. \textbf{PREFRO} 3. \textit{Absence (0) or presence (1) of condition: antorbital portion of prefrontal expanded to form a near-equilateral triangular lamina.} The presence of a short and broadly triangular preorbital portion of the prefrontal, such as is observed in dissorophoids and \textit{Karaurus} (Boy, 1972, 1974, 1978, 1985, 1986, 1987, 1995; Bolt, 1969, 1977, 1979, 1991; Ivakhnenko, 1978; Schoch, 1992) is not related simply to paedomorphic shortening of the preorbital skull region. Several short-snouted taxa (e.g. \textit{Discosauriscus}; Klembara, 1997) do not show the derived condition of this character.

18. \textbf{PREFRO} 6. \textit{Prefrontal not sutured with premaxilla (0) or sutured (1).} \textit{Acherontiscus}, colosteids and albanerpetontids show the derived condition of this feature (Carroll, 1969b; Smithson, 1982; Hook, 1983). Although the snout of \textit{Acherontiscus} is poorly preserved, a prefrontal–premaxilla contact is deduced to have existed, based on the position and morphology of the anteriormost part of the prefrontal, which sends an anterolateral flange lying immediately in front of the lacrimal.

19. \textbf{PREFRO} 7. \textit{Prefrontal without (0) or with (1) stout, lateral outgrowth.} The outgrowth in question is a stout process marking the posteroemial boundary of the antorbital vacuity in baphetids other than \textit{Spathicephalus} (Beaumont, 1977; Beaumont & Smithson, 1998), and is introduced here as a distinct character to distinguish between several kinds of irregular orbit outlines (i.e. neither elliptical nor circular) among Palaeozoic tetrapods (see also Clack, 1987b, 1998a, c, 2001).

20. \textbf{PREFRO} 8. \textit{Absence (0) or presence (1) of condition: prefrontal entering nostril margin.} The derived state of this character occurs, among others, in some primitive lissamphibians, certain derived temnospondyls, \textit{Greererpeton}, and some microsauroids, lycosorhaphids, nectrideans and aistopods (Smithson, 1982; Carroll, 1995; Bossy & Milner, 1998). We code for this character separately instead of as a state in a multistate treatment of the relationships between nostril and surrounding bones, as Carroll (1995) did. This is to prevent the introduction of constraints in the derivation of different bone arrangements in the snout from one another.

21. \textbf{PREFRO} 9. \textit{Prefrontal not sutured with maxilla (0) or sutured (1).} Some nectrideans and adelospondyls, as well as colosteids and certain primitive lissamphibians, exhibit a lateral contact between prefrontal and maxilla (Smithson, 1982; Carroll, 1995; Bossy & Milner, 1998).

Lacrimal

23. \textbf{LAC} 1. \textit{Presence (0) or absence (1) of lacrimal. Phlegethonella} (Anderson, in press) and \textit{Valdotriton} (Evans & Milner, 1996) lack a lacrimal as a separately ossified element.

24. \textbf{LAC} 2. \textit{Lacrimal not allowing (0) or allowing (1) contact between prefrontal and jugal.} The prefrontal–jugal contact excludes the lacrimal from the orbit margin, as in \textit{Acanthostega} (Clack, 1994a), \textit{Archeria} (Holmes, 1989), \textit{Chenoprosopus} (Hook, 1993; Milner & Sequeira, 1994, 1998), \textit{Cochleosaurus} (Rieppel, 1980; Milner & Sequeira, 1994, 1998), \textit{Crassigyrinus} (Panchen, 1985; Clack, 1998c), \textit{Diplocaulus} (A. C. Milner, 1980), \textit{Edops}
Batropetes found in urocordylid and diplocaulid nectrideans, however, the derived state of this character is also of the lacrimal is found in several dissorophoids. The lacrimal lying anteroventral to orbit abbreviated (1). As in the character 19, a deep margin due to an intervening exposure of the palatine. Together with absorption along its posterior margin (1), the pronounced emargination of lysorophids (Wellstead, 1991) is of a different pattern, as explained in the text (see also Carroll, 2001).

25. LAC 4. Lacrimal without (0) or with (1) dorsomesial digitiform process. A dorsomesial digitiform process of the lacrimal is observed in Brachydectes (Wellstead, 1991), such tuditanomorphs as Cardiocephalus, Euryodus, some specimens of Microcerotus and Tuditanus (Carroll & Gaskill, 1978), and in urocordylid nectrideans (A. C. Milner, 1980; Bossy & Milner, 1998).

26. LAC 5. Lacrimal without (0) or with (1) V-shaped emargination along its posterior margin. Together with character 19, a deep V-shaped notch of the lacrimal characterizes the anterior portion of the antorbital va-

27. LAC 6. Absence (0) or presence (1) of condition: portion of lacrimal lying anterocentral to orbit abbreviated (1). As in the case of character 17, an abbreviated preorbital region of the lacrinal is found in several dissorophoids. However, the derived state of this character is also found in urocordylid and diplocaulid nectrideans, Batropetes, Ostecephalus and adelospondyls. Not all short-nouted tetrapods exhibit such a state, as demonstrated by Discosauriscus (Klembara, 1997).

Maxilla

28. MAX 3. Maxilla extending behind level of posterior margin of orbit (0) or terminates anterior to it (1). A rearward extension of the maxilla is a widespread feature of several early tetrapods, and contrasts with the situation of some diplocaulid nectrideans, several microsau,

embolemes, primitive crown-amniotes and such stem-amniote groups as gephyrostegids, seymouriamorphs and diadectomorphs (Carroll & Gaskill, 1978; Gauthier et al., 1988b; Carroll, 1991b; Klembara, 1997; Lee & Spencer, 1997; Bossy & Milner, 1998).

cordylids and diplocaulids (Bossy & Milner, 1998).

It is not directly related to small size of the skull and presence of large orbits, as shown by some amphiba-

mids and seymouriamorphs (e.g. Bolt, 1969; Laurin, 1996a, c; Klembara, 1997).

30. MAX 6. Maxillary arcade closed (0) or open (1) posteriorly. A gap between the maxilla and the jugal occurs in primitive caudates (Ivakhnenko, 1978; Evans & Milner, 1996) and branchiosaurids (Boy, 1986). The maxillary arcade is closed in albanerpetontids, as demonstrated by Gardner (1999, 2001). The skull emargination of lysorophids (Wellstead, 1991) is of a different pattern, as explained in the text (see also Carroll, 2001).

31. MAX 7. Dorsal maxillary margin not forming (0) or forming (1) distinct dorsal ‘step’. In pantylids (Carroll & Gaskill, 1978; Berman et al., 1988), the pronounced facial process is separated from the posterior part of the dorsal margin of the maxilla by a sharp dorsal bend.

33. Max 9. Posterior end of maxilla not lying (0) or lying level with (1) posterior end of vomers. The derived condition of this character is one of the synapomorphies uniting scincosaurids and diplocaulids (A. C. Milner, 1980; Bossy & Milner, 1998).

Frontal

34. FRO 1. Frontal unpaired (0) or paired (1). Paired frontals occur commonly among early tetrapods in-

cluding panderichthyids (Carroll, 1995; Laurin, 1998b), except in derived diplocaulids, albaner-

35. FRO 2. Frontal shorter than (0), longer than (1), or sub-

equal to (2) parietals. This is one of several characters describing the relative proportions of the bones in the skull roof and the pattern of elongation of its inter-

pre- and postorbital regions (see also Milner, 1993).

36. FRO 4. Frontal excluded from (0) or contributing to (1) margin of orbit. The coding for this character follows mainly Laurin (1998b). The derived condition is ac-

quired in parallel in several dissorophoids and primitive lissamphibians, as well as in gephyrostegids, crown-

amniotes, derived diplocaulid nectrideans and some microsau.
37. FRO 5. Frontals and parietals not co-ossified as fronto-parietal (0) or co-ossified (1). The derived state characterizes salientians only (review in Milner, 1988).

38. FRO 6. Absence (0) or presence (1) of condition: anterior margin of frontals deeply wedged between posterolateral margins of nasals. In its derived state, this character occurs in adelospondyls, colosteids, Gephyrostegus, urocordylid nectrideans and Whatcheiria (Carroll, 1970; A. C. Milner, 1980; Smithson, 1982; Hook, 1983; Andrews & Carroll, 1991; Lombard & Bolt, 1995; Bossy & Milner, 1998). In these taxa, the posterolateral margins of the nasals are more or less deeply excavated to accommodate the anteriormost part of the frontals.

Parietal

39. PAR 1. Absence (0) or presence (1) of parietal/tabular suture. Panchen & Smithson (1987, 1988), Gauthier et al. (1988b) and most subsequent authors have placed emphasis on the mutual spatial relationships of the bones in the posterior and posterolateral parts of the skull table, and have considered them to be indicators of a deep dichotomy among primitive tetrapods. A parietal-tabular suture appears on the tetrapod stem and is maintained in crown-amniotes in Laurin’s (1998b) analysis. Conversely, our study shows that the contact between these two bones characterizes a large portion of the ‘reptiliomorph’ branch of the tetrapod tree (see discussion above).

40. PAR 2. Absence (0) or presence (1) of parietal/postorbital suture. The derived state of this character appears as a transitional stem-tetrapod feature, and is also acquired in a large assemblage of stem-amniotes (with reversals among most tuditanomorphs, seymouriamorphs and Scincosaurus (Carroll & Gaskill, 1978; A. C. Milner, 1980; Laurin, 1995, 1996b; Klembara, 1997; Bossy & Milner, 1998).

41. PAR 4. Anterior margin of parietal lying in front of (0), level with (1), or behind (2) orbit midlength. Together with character 35, this character relates the proportions of various skull elements to each other. Its distribution is less random than that of character 35. The derived state 1 is found in some Devonian tetrapods, Whatcheiria and Kotlassia. The derived state 2 is found in some stem-tetrapods (Tulerpeton, colosteids, Crassigyrinus and barphetids) as well as in almost all crown-tetrapods.

42. PAR 5. Anteriormost third of parietals not wider than frontals (0) or at least marginally wider (1). With the exception of Eusthenopteron, Panderichthys, Platyrhinops, Eocacicia and Triadobatrachus, all other taxa show the derived condition of this feature.

43. PAR 6. Parietals more than two and a half times as long as wide (0) or less (1). Eusthenopteron, Panderichthys, colosteids, trimerorhachoids, lysorophids, adelospondyls, aistopods and urocordylids show the plesiomorphic state for this character (see also characters 35 and 41 above).

44. PAR 7. Absence (0) or presence (1) of parietal/squamosal suture on skull roof. Crown-lissamphibians, crown-amniotes, Batrpetes, microbrachomorphs and diplodelpids display the derived condition of this character. This is one of several characters describing the contact between the skull table and the cheek (Carroll, 1995; Coates, 1996; Clack, 1998c, 2001; Laurin, 1998b).

45. PAR 8. Parietal-frontal suture not strongly interdigitating (0) or strongly interdigitating (1). The derived state of this character is not a simple function of the size or degree of ossification of the skull roof bones, and its distribution is rather discontinuous (e.g. most lepospondyls; some ‘reptiliomorphs’, some temnospondyls, colosteids).

46. PAR 9. Parietal-postparietal suture not strongly interdigitating (0) or strongly interdigitating (1). The occurrences of the derived condition of this character match closely those of the previous character.

Postparietal

47. POSPAR 1. Presence (0) or absence (1) of postparietals. Salientians, caudates, Batrpetes, Scincosaurus and Plegeonothia all lack ossified postparietals (A. C. Milner, 1980; Milner, 1988, 2000; Carroll, 1991a; Bossy & Milner, 1998; Rocek & Rage, 2000b; Anderson, in press).

48. POSPAR 2. Postparietals paired (0) or unpaired (1). The derived condition is found only in Ichthyostega (Jarvik, 1980, 1996), diadectomorphs (Romer, 1946; Berman et al., 1998; Berman, 2000) and Odonterpeton (fide Carroll & Gaskill, 1978).

49. POSPAR 3. Postparietal less than (0) or more than (1) four times wider than long. In its derived state, this character is observed in several post-embolomere ‘reptiliomorphs’, in Microbrachis and Hylotlesion and in several of the temnospondyls that lie crownward of Balanepet (see Milner (1990) and Yates & Warren (2000) for analysis of this character in temnospondyls).

50. POSPAR 4. Postparietals without (0) or with (1) median lappets. The median posterior lappets of the postparietals occur in Crassigyrinus, Whatcheiria, embolomeres and Pyonias. The distribution of this character follows Clack (1998c), except for the coding of Dennerpeton (see Holmes et al., 1998).

51. POSPAR 5. Absence (0) or presence (1) of postparietal/exoccipital suture. The relationships between the occiput and the skull table have been dealt with extensively in the literature on early tetrapods (e.g. Smithson, 1985; Panchen & Smithson, 1987, 1988) Carroll (1995) recognized no fewer than 12 states describing the nature of the skull table-occiput contact. Berman’s (2000)
analysis of occipital characters is followed in part here, since it simplifies to a greater degree the known spatial relationships of the otic capsules and supraoccipital (where present). The derived condition of character 51 is found among most lepospondyls, temnospondyls, a few ‘reptiliomorphs’ and colosteids.

52. **POSPAR** 6. Postparietals not entirely on occipital surface (0) or entirely on this surface (1). The derived state of this character is shared by diadectomorphs and crown-amniotes (Berman, 2000).

53. **POSPAR** 7. Postparietals without (0) or with (1) posteroventrally sloping occipital exposure. A gently sloping surface at the back of the postparietals characterizes some tuditanomorphs and lysorophids (Carroll & Gaskill, 1978; Wellstead, 1991).

54. **POSPAR** 8. Postparietals without (0) or with (1) sinuous posterior ridge. A sinuous ridge runs across the posterior part of the postparietals in ostodolepids (Carroll & Gaskill, 1978).

55. **POSPAR** 9. Postparietals without (0) or with (1) broad, concave posterior emargination. This character is taken from A. C. Milner’s (1980) analysis of nectridean interrelationships and is shared by some diplacauds.

56. **POSPAR** 10. Nasals not smaller than postparietals (0) or smaller (1). Nasals which are comparatively much smaller than the postparietals occur in colosteids, aïstopods, nectrideans (except urocordylids) and adelospondyls (A. C. Milner, 1980; Wellstead, 1982; Andrews & Carroll, 1991; Bossy & Milner, 1998; Carroll, 1998; Anderson, in press).

Postfrontal

57. **POSFRO** 1. Presence (0) or absence (1) of postfrontal. Albanerpetontids (Gardner, 2001), salientians (Rocek & Rage, 2000b), caudates (Evans & Milner, 1996; Milner, 2000) and lysorophids all lack ossified postfrontals.

58. **POSFRO** 3. Postfrontal not contacting tabular (0) or contacting it (1). The derived condition of this character describes the dermal skull roof configuration of tuditanomorph microsaurs (Carroll & Gaskill, 1978), and is acquired in parallel by Scincosaurus (A. C. Milner, 1980; Bossy & Milner, 1998).

59. **POSFRO** 4. Absence (0) or presence (1) of condition: posterior margin of postfrontal lying flush with posterior jugal margin. The posterior margins of the postfrontal and jugal lie approximately at the same transverse level in Leptorophus (Boy, 1972), Paleothyris and Petrolacosaurus (Clark & Carroll, 1973; Reisz, 1977, 1981), Diplocaulus (A. C. Milner, 1980; Bossy & Milner, 1998), Phlegethontia (Anderson, in press), as well as in ostodolepid, gymnarthrid and rynchonkid microsaurs (Gregory et al., 1956; Carroll & Gaskill, 1978).

Intertemporal

60. **INTEMP** 1. Intertemporal present (0) or absent (1) as a separate ossification. The distribution of the intertemporal is problematic, as recognized by Clack (1998c). Intertemporal presence has been considered to be primitive for tetrapods, because it has been homologized with the intertemporal of ‘osteolepiforms’. Panderichthys (Vorobyeva & Schultz, 1991) and Geererpeton (Smithson, 1982) have been coded as polymorphic for this character. Under ACCTRAN and, partially, under DELTRAN optimizations, intertemporal absence appears as a transitional feature encompassing a series of crownward stem-tetrapods (Acanthostega, Ichthyostega and Cotostega; Clack, 1994a; Jarvik, 1980, 1996; Hook, 1983). An intertemporal is present in the apical part of the tetrapod stem-group, as well as the basal portions of the lissamphibian and amniote stem-groups. However, we note that Megalolecithus lacks an intertemporal (Beaumont, 1977). The bone is lost again in the clade including crown-lissamphibians and temnospondyls more derived than Dendrerpeton (Milner, 1988, 1990). It disappears also in Solenodontosaurus (Carroll, 1970; Laurin & Reisz, 1999), diadectomorphs (Romer, 1946; Berman et al., 1998), crown-amniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981), Westlothiana (Smithson et al., 1994) and lepospondyls (Carroll & Gaskill, 1978; A. C. Milner, 1980; Andrews & Carroll, 1991; Wellstead, 1991; Bossy & Milner, 1998). Carroll & Gaskill (1978) discussed the possibility that the intertemporal may have been incorporated in surrounding skull roof bones in the ancestry of the two major groups of microsaurs. Putative differing fusion patterns provide the basis for the distinction between tuditanomorphs (intertemporal-postfrontal fusion) and microbrachiomorphs (intertemporal-parietal fusion). We question the homology of the intertemporals of limbed tetrapods, which seem to be anamastic, and the canal-bearing intertemporals which are widespread among basal osteichthyans. Discrete coding for these alternative conditions is likely to provide a more informative signal.

61. **INTEMP** 2. Intertemporal not interdigitating with cheek (0) or interdigitating (1). The plesiomorphic condition, as found in Crassigyrinus (Clack, 1998c, 2001; Paton et al., 1999), is acquired in parallel in Trimerorhachis (Case, 1935), some embolomeres (Holmes, 1984, 1989; Smithson, 1982; Clack, 1987a), gephyrostegids (Carroll, 1970; Boy & Bandel, 1973) and at least one Seymouriamorph (Klembara, 1997).

62. **INTEMP** 3. Intertemporal not contacting squamosal (0) or contacting it (1). Whatcheeria (Lombard & Bolt, 1995) and Seymouriamorphs (White, 1939; Bystrow, 1944;
Laurin, 1996b; Klembara, 1997) show the derived condition of an intertemporal-squamosal suture.

Supratemporal

63. **SUTEMP 1. Presence (0) or absence (1) of supratemporal.** A separately ossified supratemporal is missing in crown-lissamphibians (Carroll, 2000; Milner, 2000; Rocek & Rage, 2000a), as well as in microsaurus (Carroll & Gaskill, 1978), lysiophorids (Wellshead, 1991), adelospondyls (Andrews & Carroll, 1991), scincosaurids and diplacaulids (A. C. Milner, 1980; Bossy & Milner, 1998), and Phlegethonita (Anderson, in press).

64. **SUTEMP 2. Absence (0) or presence (1) of condition: supratemporal forming anterior edge of temporal notch.** This character is considered by Clack (1998a, 2001) as a potential synapomorphy of Eucritta and baphetids [see also Beaumont (1977), Beaumont & Smithson (1998) and Milner & Lindsay (1998)].

65. **SUTEMP 3. Absence (0) or presence (1) of condition: supratemporal narrow and strap-like, at least three times as long as wide.** The derived configuration of the supratemporal is observed in some aistopods (Wellshead, 1982; Carroll, 1998) and urocordylids (A. C. Milner, 1980; Bossy & Milner, 1998).

66. **SUTEMP 4. Supratemporal contact with squamosal smooth (0) or interdigitating (1).** This is one of several characters describing the nature of the contact between the skull table and the cheek (Clack, 1998c, 2001; Paton et al., 1999). The derived state appears in the tetrapod stem-group (Beaumont, 1977; Smithson, 1982; Hook, 1983; Jarvik, 1980, 1996; Clack, 1994a; Lombard & Bolt, 1995), although Crassigyrinus shows a reversal to the primitive state, and is maintained in most tennospondyls; exceptions are Isodectes (Sequeira, 1998), Broiliellus (Carroll, 1964), and some amphibamids (Watson, 1940; Bolt, 1969, 1991). On the amniote branch, the derived state appears in Anthracosaurus (Panchen, 1977; Clack, 1987b), Solenodontosaur (Carroll, 1970; Laurin & Reisz, 1999) and some semy-mouriamorphs (White, 1939; Bystrow, 1944; Laurin, 1996a).

Tabular

67. **TAB 1. Tabular present (0) or absent (1) as separate ossification.** A separately ossified tabular is absent in crown-lissamphibians (except perhaps Eocacellia; Evans & Milner, 1996; Carroll, 2000; Milner, 2000; Rocek & Rage, 2000b), Captorhinus (Fox & Bowman, 1966), Odontopteron (Carroll & Gaskill, 1978) and adelospondyls (Andrews & Carroll, 1991). In the latter group, a ‘squamostabular’ ossification is present in the position normally occupied by the squamosal and tabular in other tetrapods (see also character 86 below).

69. **TAB 3. Absence (0) or presence (1) of rounded, subdermal, button-like posterior process of tabular.** This character is found in colosteids (Smithson, 1982), baphetids (Beaumont, 1977; Beaumont & Smithson, 1998), Edops (Romer & Witter, 1942) and, possibly, Dendrerpeton (Holmes et al., 1998).

70. **TAB 4. Tabular contacts squamosal on dorsal surface of skull table (0) or not (1).** In its derived state, this character is found in stem-tetrapods more derived than colosteids (Beaumont, 1977; Lombard & Bolt, 1995; Clack, 1998c), Eucrittta (Clack, 2001), various tennospondyls (except some trimerorhachoids, Broiellus, Ecosoma and Dolostepetron; Chase, 1965; Carroll, 1964; Bolt, 1969, 1991; Berman et al., 1985; Sequeira, 1998), Eocacellia (Carroll, 2001), embolomeres (Panchen, 1972, 1977; Holmes, 1984, 1989; Smithson, 1985; Clack, 1987a, 1998c, 2001), gephyrostegids (Carroll, 1970), semy-mouriamorphs (White, 1939; Bystrow, 1944; Laurin, 1996b; Klembara, 1997), diadectomorphs (Romer, 1946; Berman et al., 1998), Paleothyris and Petrolacosaurus (Clark & Carroll, 1973; Reisz, 1977, 1981), and Westlothiana (Smithson et al., 1994). It is present also in Pterygius (A. C. Milner, 1980; Bossy & Milner, 1998).

71. **TAB 5. Tabular contact with squamosal smooth (0) or interdigitating (1).** This is one of the characters describing the nature of the contact between the cheek and the skull table (Clack, 1998c, 2001; Paton et al., 1999). An interdigitating tabular-squamosal suture occurs in Ichthyostega (Jarvik, 1980, 1996), Greerpeton (Smithson, 1982), Neldasaurus (Chase, 1965), Ecosoma (Berman et al., 1985), Pantylus and ostodolepids (Carroll & Gaskill, 1978).

72. **TAB 6. Absence (0) or presence (1) of condition: tabular elongate posteriorly or postrolaterally in the form of massive horn.** This character is a shared derived feature of diplacaulidnectridians (Beerbower, 1963; A. C. Milner, 1980; Bossy & Milner, 1998).

73. **TAB 7. Parietal-parietal width smaller than (0) or greater than (1) distance between posterior margin of skull table and posterior margin of orbits measured along the skull midline.** The apomorphic condition of this character shows no simple
distribution among crown-tetrapods. It is recorded in several dissorophoids and crown-lissamphibians (Bolt, 1969, 1991; Schoch, 1992; Daly, 1994; Milner, 2000; Rocek & Rage, 2000a), as well as Seymouriamorphs (White, 1939; Bystrow, 1944; Laurin, 1996b; Klembara, 1997), diadectomorphs (Romer, 1946; Berman et al., 1998), Paleothyris and Petrolacosaurus (Clark & Carroll, 1973; Reisz, 1977, 1981), Westlothiana (Smithson et al., 1994), various tuditanomorphs, some microbrachimorphs (Carroll & Gaskill, 1978) and some diplocaulids (Beerbower, 1963; A. C. Milner, 1980; Bossy & Milner, 1998).

74. **TAB 8.** Tabular without (0) or with (1) posteroventrally sloping occipital exposure. The posterior region of the tabulars of Stegotretus (Berman et al., 1988), ostodolepids, rhynchochid and gymnarthrids (Gregory et al., 1956; Carroll & Gaskill, 1978) slopes obliquely posteroventrally and is distinctly separated from its anterior region.

Postorbital

75. **POSORB 1.** Postorbital present (0) or absent (1) as a separate ossification. Absence of separately ossified postorbitals is shared by crown-lissamphibians (Carroll, 2000; Milner, 2000; Rocek & Rage, 2000b), lycosorphids (Wellstead, 1991), Adelospondylus (Andrews & Carroll, 1991) and the aistopods Osteocephalus and Phlegethonida (Carroll, 1998; Anderson, in press).

76. **POSORB 2.** Postorbital without (0) or with (1) ventrolateral digitiform process fitting into deep vertical jugal groove. The presence of a distinct, ventrolateral digitiform process of the postorbital is a shared derived feature of various tuditanomorphs, some microsaurs as Batropetes (Wellstead, 1982) and nectrideans (except Keraterpeton and Diploceraspis; Beerbower, 1963; A. C. Milner, 1980; Bossy & Milner, 1998).

77. **POSORB 3.** Postorbital contributing to (0) or excluded from (1) margin of orbit. The postorbital is excluded from the orbit margin in Colosteus (Hook, 1983), Acherontiscus (Carroll, 1969b), Adelospondylus and Dolichopareias (Andrews & Carroll, 1991) and the diplocaulids Diplocaulus and Diploceraspis (Beerbower, 1963; A. C. Milner, 1980; Bossy & Milner, 1998).

78. **POSORB 4.** Postorbital irregularly polygonal (0) or broadly crescentic and narrowing to a posterior point (1). The derived state of this character is recorded in Eucritta (Clack, 1998a, 2001), most temnospondyls (Chenoprosopus, Triadobatrachus and Phonerpeton are exceptions; Hook, 1993; Case, 1935; Dilkes, 1990), several stem-amiotes (except the embolomere Anthracosaurus; Panchen, 1977), Paleothyris (Clark & Carroll, 1973) and Westlothiana (Smithson et al., 1994).

79. **POSORB 5.** Postorbital not contacting tabular (0) or contacting it (1). A postorbital-tabular suture occurs in Scincosaurus (A. C. Milner, 1980; Bossy & Milner, 1998) and tuditanomorphs (except Hapsidopareion; Carroll & Gaskill, 1978).

80. **POSORB 6.** Postorbital not wider than orbit (0) or wider (1). Under ACCTRAN, the apomorphic condition of this character is acquired in parallel by Acanthostega (Clack, 1994a), colosteids (Smithson, 1982; Hook, 1983), Edops (Romer & Witter, 1942), Trimerorhachis (Case, 1935), Pantylus (Carroll & Gaskill, 1978), and a diverse assemblage consisting of adelospondyls (except Adelospondylus; Andrews & Carroll, 1991), Lethiscus (Wellstead, 1982) and nectrideans (except Keraterpeton and Diploceraspis; Beerbower, 1963; A. C. Milner, 1980; Bossy & Milner, 1998).

81. **POSORB 7.** Absence (0) or presence (1) of condition: postorbital at least one-fourth the width of the skull table at the same transverse level. The distribution of this character is almost identical to that of the previous character, except that all temnospondyls exhibit the plesiomorphic state which is also observed, among nectrideans, in Scincosaurus and Diploceraspis.

Squamosal

83. **SQU 1.** Anterior part of squamosal lying behind (0) or in front (1) of parietal midlength. The derived condition is found in almost all tetrapods more derived than Ichthyostega. Exceptions are Greererpeton (Smithson, 1982), Eucritta (Clack, 2001), Trimerorhachis (Case, 1935), some crown-lissamphibians (Evans & Milner, 1996; Milner, 2000), such microsaurs as Batropetes (Carroll, 1991a), Tuditanus, Asaphestera, hapsidopareiontids and ostodolepids (Carroll & Gaskill, 1978) and aistopods (Wellstead, 1982; Carroll, 1998).

84. **SQU 2.** Absence (0) or presence (1) of condition: posterior margin of squamosal sloping anteroventrally. Despite similarities in the suspensorium configuration, an anteroventrally sloping squamosal does not identify a clade. The character appears to have been developed in albanerpetontids (Gardner, 2001), Batropetes (Carroll, 1991a), Cardiocephalus, Odonterpeton (Carroll & Gaskill, 1978) and lycosorphids (Wellstead, 1991).

85. **SQU 3.** Squamosal without (0) or with (1) broad, concave semicircular embayment. A squamous embayment is observed in Adelospondylus (Andrews & Carroll, 1991), some Seymoriamorphs (Bystrow, 1944; Klembara, 1997), most temnospondyls (Isodus is an exception; Sequeira, 1998) and Triadobatrachus (Rocek & Rage, 2000b).
86. **SQU 4. Absence (0) or presence (1) of single *squamoso-tabular* in the position of squamosal and tabular.** This is one of the features employed by Andrews & Carroll (1991) to diagnose adelospondyls.

87. **SQU 5. Squamosal without (0) or with (1) internal shelf bracing quadrate from behind.** The derived configuration of the squamosal is shared by scincosaurid and diplacaulid neocryptodans (Beerbower, 1963; A. C. Milner, 1980; Bossy & Milner, 1998).

Jugal

88. **JUG 1. Presence (0) or absence (1) of jugal.** A separately ossified jugal is absent in salientians, caudates and lycorophids (Wellstead, 1991; Evans & Milner, 1996; Milner, 2000; Rocé & Rage, 2000 b).

89. **JUG 2. Jugal not contributing (0) or contributing (1) to ventral margin of skull roof.** The jugal enters the ventral skull roof margin in Baphetes (Beaumont, 1977), coelosaurid edopoids (Rieppel, 1980; Hook, 1993; Godfrey & Holmes, 1995; Milner & Sequeira, 1998), some trimerorhachoids (Chase, 1965; Sequeira, 1998), Schoenfelderpeton (Boy, 1972), albanerpetontids (Gardner, 2001), Eoacaelia (Carroll, 2000), several embolomeres (Panchen, 1972; Holmes, 1984, 1989) and all amniotes more derived than gephyrostegids. Among lepospondyls, the plesiomorphic state is observed in Oestocephalus (Carroll, 1998) and the urocordylids Sauropleura and, possibly, Urocodys (A. C. Milner, 1980; Bossy & Milner, 1998).

90. **JUG 3. Jugal not contacting (0) or contacting (1) pterygoid.** A jugal-pterigoid suture is found in Megalocephalus (Beaumont, 1977), coelosaurid edopoids (Rieppel, 1980; Hook, 1993; Godfrey & Holmes, 1995; Milner & Sequeira, 1998), some embolomeres (Holmes, 1984, 1989; Clack, 1987 a) and Captorhinus (Fox & Bowman, 1966).

91. **JUG 4. Jugal depth below orbit greater (0) or smaller (1) than half orbit diameter.** Primitively, the jugal forms a broad area ventral to the orbit (Whatcheeria is an exception among stem-tetrapods; Lombard & Bolt, 1995). Among crown-tetrapods, the plesiomorphic state is observed in edopoids (Milner & Sequeira, 1998), Eryops (Sawin, 1941), Pholiderpeton scutigerum (Clack, 1987 a) and Diplacaulus (A. C. Milner, 1980; Bossy & Milner, 1998).

92. **JUG 6. Absence (0) or presence (1) of condition: jugal ventrally expanded to form flange overlapping posterior end of maxilla.** This particular configuration of the jugal is a synapomorphy of pantylids (Carrol & Gaskill, 1978; Berman et al., 1988).

93. **JUG 7. Jugal without (0) or with (1) V-shaped indentation of dorsal margin.** A dorsal indentation of the jugal occurs in Crassigyrinus (Clack, 1998 c), Whatcheeria (Lombard & Bolt, 1995), baphetids (Beaumont, 1977), and a clade comprising Anthracosaurus (Panchen, 1977; Clack, 1987 b) and Pholiderpeton attheyi (Panchen, 1972). This is one of the characters describing irregular orbit outlines in early tetrapods, and appears as a transitional stem-tetrapod feature under both ACCTRAN and DELTRAN.

94. **JUG 8. Jugal not extending (0) or extending (1) anterior to anterior orbit margin.** The jugal extends anterior to the anterior orbit margin in Acanthostega (Clack, 1994 a), edopoids (Milner & Sequeira, 1998), Eryops (Sawin, 1941), most embolomeres (Panchen, 1972, 1977; Holmes, 1989; Smithson, 1985), Seymouria (White, 1939; Laurin, 1996 b), Captorhinus (Fox & Bowman, 1966), Pantylus (Carroll & Gaskill, 1978), Scincosaurus and derived diplacaulids (Beerbower, 1963; A. C. Milner, 1980; Bossy & Milner, 1998).

Quadratojugal

95. **QUAJUG 1. Presence (0) or absence (1) of quadratojugal.** Valdostriton (Evans & Milner, 1996) and lycorophids (Wellstead, 1991) do not show an ossified quadratojugal.

96. **QUAJUG 2. Absence (0) or presence (1) of condition: quadratojugal much smaller than squamosal.** The derived condition of this character occurs in Karaurus (Milner, 2000), and several microsaurs, such as Odontopetont and a clade composed of Asaphestera, hapsidopar- ciontids, ostodolepids, rhynchonkids and gymnarthrids (Carroll & Gaskill, 1978).

97. **QUAJUG 3. Absence (0) or presence (1) of condition: quadratojugal an anteroposteriorly elongate and dorsoventrally narrow splinter of bone.** The distribution of the derived condition of this character overlaps that of the preceding character, except for its absence in Asaphestera.

Quadrate

98. **QU 1. Quadrate without (0) or with (1) dorsal process.** The dorsal process of the quadrate was discussed by Holt (1969, 1991), Bolt & Lombard (1985) and Milner (1988, 1993). It is regarded as the homologue of the tympanic annulus which suspends the tympanum in several salientians. It occurs in Dendrerpeton (Holmes et al., 1998), trematopids (Olson, 1941; Dilkes, 1990), dissorophids and amphibamids (Bolt, 1969, 1991; Daly, 1994). A similar process has been documented in other taxa, such as certain Seymouriamorphs (White, 1939; Bystrow, 1944; Laurin, 1996 b; Klembara, 1997) and diadectomorphs (Romer, 1946; Berman et al., 1998), but it is not certain whether it had the same function.

Preopercular

99. **PREOPE 1. Absence (1) or presence (0) of preopercular.** A preopercular is lost in all tetrapods more derived than
Ichthyostega (Clack, 1998c, 2001; see also discussion in Panchen, 1991).

Nostrils
100. NOS 3. Absence (0) or presence (1) of condition: nostrils elongate and key-hole shaped. Acheloma, Phonerpeton and Eosolina share the derived state (Olson, 1941; Berman et al., 1985; Dilkes, 1990). See also Dilkes (1990) and Daly (1994) for a discussion of this character.

101. NOS 4. Absence (0) or presence (1) of condition: nostrils elliptical, with greater axis oriented obliquely in antero medial to posterolateral direction, and at least 70% the length of the internasal suture. The derived condition of the nostril is found in branchiosaurids (Boy, 1972; Schoch, 1992; Boy & Sues, 2000), some amphibamids (Watson, 1940; Bolt, 1969, 1977, 1979, 1991) and certain crown lissamphibians (Evans & Milner, 1996; Milner, 2000).

Internarial fenestra

Orbits
103. ORB 1. Interorbital distance greater than (0), smaller than (1), or subequal to (2) half skull table width. The plesiomorphic state is found in Eocaecilia (Carroll, 2000), most tuditanomorphs and one microbrachomorph (Carroll & Gaskill, 1978) and in Batrachiderpeton (A. C. Milner, 1980; Bossy & Milner, 1998). State 2 appears sporadically on the tree, in Colostus (Hook, 1983), Chasmosaurus (Hook, 1993; Milner & Sequeira, 1998), Eoherpeton (Smithson, 1985), some dissorophoids (White, 1939; Bystrow, 1944; Laurin, 1996b), Diadectes (Berman et al., 1998), Westlothiana (Smithson et al., 1994), Batropetes, Tattidians, Microbrachis and Hylomorphus (Carroll & Gaskill, 1978; Carroll, 1991a), Scincosauria, some diplocaulids (A. C. Milner, 1980; Bossy & Milner, 1998) and Osteocephalus (Carroll, 1998).

104. ORB 2. Interorbital distance greater than (0), smaller than (1) or subequal to (2) maximum orbit diameter. The different states of this character show a more complicated distribution than those of the preceding character. State 1, found in Acanthostega (Clack, 1994a), Cassius (Clack, 1998c) and Whatcheiria (Lombard & Bolt, 1995), is widespread among crown-tetrapods. It is observed in Eucrilla (Clack, 2001), Trimerorhachis (Case, 1935), Balateropetnon (Milner & Sequeira, 1994), and most dissorophoids and crown-lissamphibians (Bolt, 1969, 1991; Boy, 1972, 1987, 1995; Schoch, 1992; Daly, 1994; Evans & Milner, 1996; Milner, 2000; Rocek & Rage, 2000b). It is also found in many embolomeres (Panchen, 1972, 1977; Holmes, 1984, 1989; Clack, 1987a), gephyrostegids (Carroll, 1970), Discosauriscus (Klembara, 1997), basal crown amniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981) and a clade of aistopods plus urocodylids (Wellstead, 1982; A. C. Milner, 1980; Bossy & Milner, 1998; Carroll, 1998; Anderson, in press). State 2 characterizes baphetids (Beaumont, 1977), such dissorophoids as Eosolina and Broiliellus (Carroll, 1964, 1970; Berman et al., 1985), Batropetes (Carroll, 1991a), adelospondyls (Andrews & Carroll, 1991) and derived diplocaulids (Beerbower, 1963; A. C. Milner, 1980; Bossy & Milner, 1998). The plesiomorphic condition, exhibited by Ichthyostega (Jarvik, 1980, 1996) and colosteids (Smithson, 1982; Hook, 1983), occurs also in edopoids (Milner & Sequeira, 1998), some trimerorhachoids (Chase, 1965; Sequeira, 1998), Dendrerpeton (Holmes et al., 1986), Eryops (Sawin, 1941), Platyrhinos (Milner, 2000), Eocaenops (Carroll, 2000), Eoherpeton (Smithson, 1985), Selenodonsaurus (Laurin & Reisz, 1999), some seymouriamorphs (White, 1939; Bystrow, 1944; Laurin, 1996b), diadectomorphs (Romier, 1946; Berman et al., 1998), most microsaurs (Carroll & Gaskill, 1978) sciurosaurs and several diplocaulids (A. C. Milner, 1980; Bossy & Milner, 1998).

Pinell foramen
105. PIN FOR 1. Presence (0) or absence (1) of pinel foramen. A pinel foramen is absent in cochleosaurid edopoids (Milner & Sequeira, 1998), Pantylus, ostodolestids (Carroll & Gaskill, 1978), lysorophoids (Wellstead, 1991), albanerpetontids and most crown lissamphibians (Evans & Milner, 1996; Carroll, 2000; Milner, 2000; Gardner, 2001). Milner & Sequeira (1998) discussed in detail the occurrence of this character in cochleosaurids. Several species show progressive obliteration of the foramen during growth. As a general condition, closure of the foramen is a diagnostic feature of cochleosaurids with a skull length of 120 mm or more.

Central, elongate and lightly sculptured area of skull table

108. L SC SKU 1. Absence (0) or presence (1) of lightly sculptured area. Milner & Sequeira (1998, p. 279) describe ‘Depressed areas with subdued sculpture between parallel anteroposterior sculpture ridges on either side of the skull table’ as a shared derived feature of cochleosaurid edopoids (see also Godfrey & Holmes, 1995). Accordingly, the derived state of this character is assigned to *Cochleosaurus* and *Chenoprosopus*.

Posttemporal fossae

109. PTF 1. Fossa at dorsolateral corner of occiput, not bordered laterally, roofed over by skull table and floored by dorsolateral extension of opisthotic (0); fossa near dorsolateral corner of occiput, roofed over by occipital flanges of tabular and postorbital and bordered laterally and ventrally by dorsolateral extension of opisthotic meeting ventromedial flange of tabular (1); small fossa near ventrolateral corner of occiput bordered laterally by ventromedial flange of tabular, roofed over by dorsal portion of lateral margin of supraoccipital–opisthotic complex and floored by lateral extension of opisthotic (2); absence of fossa (3). The different conditions of the posttemporal fossae and associated codings are based on Berman’s (2000) recent study of the occipital region in early tetrapods. State 3 is acquired in parallel in *Ichthyostega* (Jarvik, 1980, 1996) and embolomeres (Panchen, 1977; Holmes, 1984, 1989; Smithson, 1985; Clack, 1987a). State 2 characterizes diadectomorphs and crown-annamniotes (Romer, 1946; Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981; Berman et al., 1998). State 1 is widespread among derived stem-tetrapods (Beaumont, 1977; Smithson, 1982, 1985).

Proportions of skull table

110. SKU TAB 1. Absence (0) or presence (1) of condition: postorbital region of skull roof abbreviated. Although shortening of the postorbital skull roof region occurs in various degrees, several crown-group taxa are distinctly different from the outgroup and from stem-tetrapods in that their skull roof is usually wider than long, regardless of the morphology and proportions of its various constituent bones. Several temnospondyls more crownward than trimerorhachiods (Carroll, 1964; Bolt, 1969, 1991; Boy, 1972, 1987, 1995; Berman et al., 1985; Schoch, 1992; Daly, 1994; Milner & Sequeira, 1994) and crown-lissamphibians (Carroll, 2000; Milner, 2000; Rocek & Rage, 2000b) have acquired the derived state of this character independent of several basal and crown-annamniotes, *Westlothiana*, microsaurs, *Scincosaurus* and derived diplocaulidans (White, 1939; Bystrow, 1944; Romer, 1946; Beerbower, 1963; Fox & Bowman, 1966; Carroll, 1970; Boy & Bandel, 1973; Panchen, 1977; Reisz, 1977, 1981; A. C. Milner, 1980; Smithson et al., 1994; Laurin, 1996b; Klembara, 1997; Berman et al., 1998; Bossy & Milner, 1998).

Temporal fenestra

111. TEM FEN 1. Absence (0) or presence (1) of broad postorbital opening (*aistopod pattern*). In all aistopods, a large temporal fenestra, not confluent with the orbit, occupies more than half of the skull length (Wellstead, 1982; Carroll, 1998; Anderson, in press). Repatterning of the postorbital region of the skull involves loss of some bones.

Cheek emargination

112. CHE EMA 1. Absence (0) or presence (1) of ventral cheek emargination (*pattern of certain tuditanomorph microsaurs*). In hapsidopareiontids, ostodolepids and some gymnarthrids (Gregory et al., 1956; Carroll & Gaskill, 1978), the ventral cheek margin is excavated to various degrees without involving loss of cheek bones. This excavation, particularly evident in hapsidopareiontids and ostodolepids, confers a strongly arched profile to the posterior-ventral part of the skull table.

Interfrontonasal

113. IFN 1. Absence (0) or presence (1) of interfrontonasal. An interfrontonasal appears to be diagnostic of *Eryops* (Sawin, 1941), and is present in other eryopoids, such as *Clamorosaurus* Gubin, 1983.

Suspensorium

114. SUS 1. Absence (0) or presence (1) of anteroposteriorly narrow, bar-like squamosals. The derived condition of the squamosals results in a shortened, oblique configuration of the posterior, external surface of the suspensorium in
lysorophids (Wellstead, 1991), aistopods (Wellstead, 1982; Carroll, 1998; Anderson, in press), as well as in the microsaurs Batrhopetes (Carroll, 1991a), Hapsidospareion and, possibly, Cardiocephalus (Carroll & Gaskill, 1978).

Sensory canals

115. SC1. Lateral line system on skull roof totally enclosed (0), mostly enclosed with short sections in grooves (1), mostly in grooves with short sections enclosed (2), entirely in grooves (3), absent (4). The codings for this and the following character are based on data collated from analyses by Clack (1998c, 2001), Ahlberg & Clack (1998) and Paton et al. (1999). Inspection of the data set reveals that, in the case of both characters, state 4 is widespread in the crown-group, and that states 1, 2 and 3 are acquired independently (and, often, coexist) in different clades.

(b) **Palate**

Vomer

117. VOM 1. Absence (0) or presence (1) of condition: ventral, exposed surface of vomers narrow, elongate and strip-like, without extensions anterolateral or posterolateral to choana and two and a half to three times longer than wide. The derived state of this character is widespread on the amniote branch of the tetrapod tree (Gauthier et al., 1988b; Lee & Spencer, 1997). Importantly, its occurrence does not depend upon the overall morphology of the preorbital skull region. It is found in broad-snouted stem-amniotes, such as Discosauriscus (Klembara, 1997), as well as in long-snouted forms, such as embolomeres (Panchen 1977; Holmes, 1984, 1989; Smithson, 1985; Clack, 1987a), gephyrostegids (Carroll, 1970), diadectomorphs (Romer, 1946; Fracasso, 1987; Berman et al., 1998), crown-amniotes (Fox & Bowman, 1966; Clack & Carroll, 1973; Reisz, 1977, 1981) and Westlothiana (Smithson et al., 1994). Microsaurids (Carroll & Gaskill, 1978), lysorophids (Wellstead, 1991), sauropsida and Urocorydus (Bossy & Milner, 1998) also show elongate vomers. The plesiomorphic condition of this character is widespread in stem-tetrapods and in the temnospondyl-lissamphibian clade, regardless of the degree of elongation of the snout (several longirostrine temnospondyls represent an exception; Schoch & Milner, 2000).

118. VOM 3. Vomer with (0) or without (1) fang pair. The coding of this character follows Gauthier et al. (1988b), Clack (1998c, 2001) and Laurin (1998b). Vomerine fangs are absent in Ichthyostega (Jarvik, 1980, 1996), certain dissorophoids and crown-lissamphibians (Watson, 1940; Carroll, 1964, 2000; Bolt, 1969, 1977, 1979, 1991; Boy, 1972; Evans & Milner, 1996; Milner, 2000), Pholidopteron atheyi (Panchen, 1972), Kotlassia (Bystrow, 1944), diadectomorphs (Romer, 1946; Fracasso, 1987; Berman et al., 1998), crown-amniotes (Fox & Bowman, 1966; Clack & Carroll, 1973; Reisz, 1977, 1981), and all lepospondyls in which the palate is visible (Euryodus is, however, an exception, since fang pairs are present; also, Micraroter is polymorphic for this character; Carroll & Gaskill, 1978).

119. VOM 4. Vomer without (0) or with (1) denticles. The presence of a denticle shagreen patch on the vomer shows a rather uneven distribution. Among stem-tetrapods, it is observed in Tulerpeton (Lebedev & Clack, 1993), Whatcheeria (Lombard & Bolt, 1995) and baephyodonts (Beaumont, 1977). Among crown-tetrapods, it is found in Eucritta (Clack, 2001), several temnospondyls (Sawin, 1941; Romer & Witter, 1942; Carroll, 1964; Bolt, 1969, 1991; Berman et al., 1985; Milner & Sequeira, 1994, 1998; Holmes et al., 1998; Dilkes, 1990; Daly, 1994), Caenorhachis (Holmes & Carroll, 1977; Ruta et al., 2001), gephyrostegids (Carroll, 1970), Discosauriscus (Klembara, 1997), Seymouria (White, 1939; Laurin, 1996b), Petrolacoc saurus (Reisz, 1977, 1981), some tuditanomorphs (e.g. Saxnerpeton; Micraroter; Euryodus) and all microbrachiacmorphs (Carroll & Gaskill, 1978).

120. VOM 5. Vomer excluded from (0) or contributing to (1) interpterygoid vacuities. The vomers enter the margins of the palatal vacuities in post-edopoid temnospondyls, albanerpetontids and crown-lissamphibians (Milner, 1988, 1990, 2000; Carroll, 2000; Röcek & Rage, 2000b; Gardner, 2001), as well as in Hyloplesion (Carroll & Gaskill, 1978) and derived diplocaulids (Beerbower, 1963; A. C. Milner, 1980; Bossy & Milner, 1998).

121. VOM 7. Vomer not forming (0) or forming (1) suture with maxilla anterior to choana. The derived condition of this character is found in Ichthyostega (Jarvik, 1980, 1996), Crassinigrinus (Clack, 1996, 1998c), Cochleosaurus (Godfrey & Holmes, 1995; Milner & Sequeira, 1998), certain trigemorhachoids (Case, 1935; Chase, 1965), Eosospus (Daly, 1994) and primitive crown-lissamphibians, where observed (Evans & Milner, 1996; Carroll, 2001).

122. VOM 8. Vomer with (0) or without (1) toothed lateral crest. With the exception of Crassinigrinus (Clack, 1998c) and Eosospus (Daly, 1994), all tetrapods more derived than Tulerpeton lack a lateral crest on the ventral surface of the vomer (for descriptions, see Lebedev & Clack, 1993).

123. VOM 9. Vomer with (0) or without (1) anterior crest. The distribution of this character is almost identical to that of the previous character, except that the derived condition is also present in Ichthyostega.
and one nectridean (Scincosaurus; A. C. Milner, 1980; Bossy & Milner, 1998).

129. **PAL 3.** Palatine excluded from (0) or contributing to (1) interpterygoid vacuities. The derived state of this character is shared by scincosaurians and diplocaulids (Beerbower, 1963; A. C. Milner, 1980; Bossy & Milner, 1998), as well as by derived dissorophoids and crown-lissamphibians (Carroll, 1964; Bolt, 1969, 1977, 1979, 1991; Boy, 1972, 1987, 1995; Milner, 1988, 1990, 1993, 2000; Carroll, 2000; Rocek & Rage, 2000 b). It is also documented in Isoedectes (Sequeira, 1998).

130. **PAL 4.** Palatine with (0) or without (1) tooth row (3+). A palatine tooth row is present in all stem-tetrapods less derived than baphetids (Clack, 1998), as well as in trimerorhachoids (Case, 1935; Chase, 1965), some dissorophoids and Eocaccilia (Bolt, 1969, 1977, 1979, 1991; Boy, 1972, 1987, 1995; Milner, 1988, 1990, 1993, 2000; Schoch, 1992; Carroll, 2000; Rocek & Rage, 2000 b). It is also documented in Isoedectes (Sequeira, 1998).

131. **PAL 5.** Palatine without (0) or with (1) lateral exposure in anterocentral orbit margin. Among the taxa included in the present analysis, a lateral exposure of the palatine contributing to the orbit margin is present in Isoedectes (Sequeira, 1998); Eocaccilia (Berman et al., 1985), Micromelerpeton (Boy, 1995) and Dolerolerasus (Bolt, 1969, 1977, 1979, 1991).

132. **PAL 6.** Absence (0) or presence (1) of condition: palatine articulates with maxilla only at its anterior end. Apaton (Schoch, 1992), Leptorophus and Schoenfelderpeton (Boy, 1972) share the derived condition (Milner, 1990, 1993; Trueb & Cloutier, 1991). This is also present in Petro- lasaurus (Reisz, 1977, 1981).

133. **PAL 7.** Palatine not reduced (0) or reduced (1) to slender, strut-like bone. As described by Milner (1990, 1993), this condition is found in micromelerpetontids, branchiosaurids, some amphibamids and some crown-lissamphibians (Boy, 1972, 1987, 1995; Bolt, 1969, 1977, 1979, 1991; Milner, 1990, 1993; Rocek & Rage, 2000 b).

ECT 3. Ectopterygoid without (0) or with (1) denticles. A denticle shagreen patch on the ectopterygoid is observed in Whatcheeria (Lombard & Bolt, 1995), baphetids (Beaumont, 1977), some temnospondyls (Sawin, 1941; Romer & Witter, 1942; Milner & Sequeira, 1994, 1998; Godfrey & Holmes, 1995; Holmes et al., 1998), Caenorhachis (Holmes & Carroll, 1977; Ruta et al., 2001), Protorygynus (Holmes, 1984), gephyrostegids (Carroll, 1970; Boy & Bandel, 1973), some seymouriamorphs (White, 1939; Laurin, 1996b; Klembara, 1997), Westlothiana (Smithson et al., 1994), some microbrachomorphs, few tuditanomorphs (Carroll & Gaskill, 1978) and at least one adelospondyl (Adelospondylus; Andrews & Carroll, 1991).

ECT 4. Ectopterygoid longer than/as long as palatines (0) or not (1). Primitively, the ectopterygoid is an elongate and subrectangular bone, as found in the tetrapod stem-group, in temnospondyls up to the level of trematocephalian (e.g. Olson, 1941; Sawin, 1941; Romer & Witter, 1942; Milner & Sequeira, 1994, 1998; Godfrey & Holmes, 1995; Holmes et al., 1998), in Caenorhachis and embolomeres (Panchen, 1972, 1977; Holmes & Carroll, 1977; Smithson, 1985; Clack, 1987a; Ruta et al., 2001). A reversal to the pleisomorphic state is documented in Pyonius (A. C. Milner, 1980; Bossy & Milner, 1998) and some seymouriamorphs (Bystrøw, 1944; Klembara, 1997).

ECT 5. Ectopterygoid with (0) or without (1) tooth row (3+). Absence of an ectopterygoid tooth row [see coding in Clack (1998c, 2001) and Paton et al. (1999)] is a shared derived feature of baphetids and crown-tetrapods, but reversals to the primitive state are widespread. Such reversals are documented in trimerorhachoids (Case, 1935; Chase, 1965), micromelerpetontids and branchiosaurids (Boy, 1972, 1987, 1995; Milner, 1990, 1993; Schoch, 1992), embolomeres (Panchen, 1972, 1977; Holmes, 1984, 1989; Smithson, 1985; Clack, 1987a), Kotlassia (Bystrøw, 1944), ostodolepid, gymnarthrid and rhynchonkid tuditanomorphs (Gregory et al., 1956; Carroll & Gaskill, 1978) and Pyonius (A. C. Milner, 1980; Bossy & Milner, 1998; optimized as present in remaining nechodinians under ACCTRAN).

ECT 7. Absence (0) or presence (1) of condition: ectopterygoid narrows wedged between palatine and pterygoid. The derived state is shared by Hyloplesion (in which it is more pronounced) and Odonteterpeton (Carroll & Gaskill, 1978).

Pterygoids

PTE 3. Absence (0) or presence (1) of pterygoid flange oriented transversely. There is as yet no consensus on what counts as a transverse pterygoid flange, although this is one of the most widely discussed apomorphies of amniotes (Heaton, 1980; Gauthier et al., 1988b; Carroll, 1991b; Lee & Spencer, 1997). As pointed out by Laurin (1998b), this character is more widespread among tetrapods than previously assumed, and is certainly present in some temnospondyls (Yates & Warren, 2000). However, we point out that the flanges of Eryops, Amphibamus and Ecolsonia (Watson, 1940; Sawin, 1941; Berman et al., 1985) are neither as developed as, nor conform to the pattern (e.g. transverse orientation) of, those of gephyrostegids (Carroll, 1970), seymouriamorphs (White, 1939; Bystrøw, 1944; Laurin, 1996a; Klembara, 1997), diacodexomorphs (Romer, 1946; Berman et al., 1998) and crown-amniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981). This character should be read in conjunction with character 144 below. It refers to the presence of a transverse, ventrally directed thickening of the posterior margin of the pterygoid region lying immediately postero-lateral to the recess for the basiptygoid process. It may coexist with a postero-lateral flange (character 144 below), as in seymouriamorphs.

PTE 4. Absence (0) or presence (1) of teeth on transverse pterygoid flange. Limnoscelis shares the presence of pterygoid teeth on the transverse flange with Paleothyris and Petrolacosaurus (Romer, 1946; Clark & Carroll, 1973; Reisz, 1977, 1981).

PTE 7. Absence (0) or presence (1) of condition: quadrate ramus of pterygoid laterally oriented. In caudates, the laterally directed quadrate ramus of the pterygoid...
extends almost perpendicularly to the anteroposterior axis (Evans & Milner, 1996; Milner, 2000).

144. PTE 9. Pterygoid without (0) or with (1) posterolateral flange. A posterolateral flange (not transversely oriented) is found in several primitive and derived temnospondyls (Olson, 1941; Sawin, 1941; Romer & Witter, 1942; Carroll, 1964; Chase, 1965; Bolt, 1969, 1977, 1979, 1991; Berman et al., 1985; Dilkes, 1990; Daly, 1994; Milner & Sequeira, 1994, 1998; Godfrey & Holmes, 1995; Holmes et al., 1998; Carroll, 2000; Milner, 2000), as well as seymouriamorphs (see also character 141 above), *Limnoscelis* (Romer, 1946; the situation of *Diacodexis* is unclear), some tuditanomorphs and few microbrachomorphs (Carroll & Gaskill, 1978).

145. PTE 10. Pterygoids not sutured with each other (0) or sutured (1). Pterygoids that fail to meet in the midline are documented in temnospondyls (except *Edops*; Romer & Witter, 1942; Milner & Sequeira, 1998) and crown-lissamphibians, as well as *Kotlassia* (Bystrow, 1944), *Pelodusosites*, *Rhynchohos* and *Hylopleston* (Carroll & Gaskill, 1978), lysorophids (Wellstead, 1991) and *Scincosaurus* (A. C. Milner, 1980; Bossy & Milner, 1998).

147. PTE 12. Pterygoid not sutured with posterior end of palatine (0) or sutured (1). *Platyhyrinops* (Milner, 2000), *Dolerpeton* (Bolt, 1969, 1991) and *Eocaecilia* (Carroll, 2000) share the derived condition of this character.

148. PTE 13. Pterygoid without (0) or with (1) distinct, mesially directed process for the basipterygoid recess. The derived condition characterizes several temnospondyls. The derived state of this character is unclear, some tuadanomorphs and few microbrachomorphs (Carroll & Gaskill, 1978).

151. PTE 16. Palatal ramus of pterygoid without (0) or with (1) distinct, anterior, unornamented digitiform process. The process in question, at the anterior end of the palatal ramus of the pterygoid, is visible in colosteids (Smithson, 1982; Hook, 1983), *Eurydus* and *Microbrachis* (Carroll & Gaskill, 1978) and in *Adelospondylus* (Andrews & Carroll, 1991).

152. PTE 17. Basal region of pterygoid immediately anterior to quadrate ramus without (0) or with (1) sharply defined, elongate longitudinal groove. An anteroposteriorly elongate sulcus, marking a deflection between two parts of the basal region of the pterygoid is found in hapsidopareiontids, ostodolepids, rhynchonkids and gymnarthids (Carroll & Gaskill, 1978).

Interpterygoid vacuities

154. INT VAC 2. Absence (0) or presence (1) of condition: interpterygoid vacuities occupying at least half of palatal width. The derived state of this character occurs in most temnospondyls (*Edops* is a notable exception; Romer & Witter, 1942; Milner & Sequeira, 1994, 1998; Holmes, 2000; Ruta et al., 2001), crown-lissamphibians (Carroll, 2000; Milner, 2000; Rocek & Rage, 2000b), *Pytonius* and several derived diplocaulids (Beerbower, 1963; A. C. Milner, 1980; Bossy & Milner, 1998). See also discussion in Anderson (2001).

155. INT VAC 3. Absence (0) or presence (1) of condition: interpterygoid vacuities concave along their whole margins. Except for *Pytonius*, the distribution of this character is identical to that of the previous character (see also Ruta et al., 2001).

156. INT VAC 4. Absence (0) or presence (1) of condition: interpterygoid vacuities together broader than long. The distribution of this character is identical to that of character 155, except for *Eocaecilia* (Carroll, 2000), *Chenoprosopus* (Hook, 1993; Milner & Sequeira, 1998), trimerorhachoids (Case, 1935; Chase, 1965; Sequeira, 1998), *Balanerpeton* (Milner & Sequeira, 1994), *Dendrerpeton* (Holmes et al., 1998), *Eryops* (Sawin, 1941) and dissorophids (Olson, 1941; Dilkes, 1990).

Choanae

157. CHO 1. Absence (0) or presence (1) of condition: choanae wider anteriorly than posteriorly. The derived condition
is shared by Chenoprosopus and Cochleosaurus (Hook, 1993; Godfrey & Holmes, 1995; Milner & Sequeira, 1998).

Anterior palatal vacuity

158. ANTVAC 1. Presence (0) or absence (1) of anterior palatal vacuity. Absence of an anterior palatal vacuity characterizes all tetrapods more crownward than Crassigyrinus (Megaloccephalus, however, is an exception; Beaumont, 1977). A reversal to the plesiomorphic condition is documented in trimerorhachoids (Case, 1935; Chase, 1965; Sequeira, 1998), Acheloma (Olson, 1941) and Micromelerpeton (Boy, 1995).

159. ANTVAC 2. Anterior palatal vacuity single (0) or double (1). A double palatal vacuity occurs in Acanthostega (Clack, 1994), Greererpeton (Smithson, 1982), Crassigyrinus (Clack, 1996, 1998) and trimerorhachoids (Case, 1935; Chase, 1965; Sequeira, 1998).

(c) Occiput and braincase

Supraoccipital

160. SUPOCC 1. Supraoccipital absent (0) or present (1) as separate ossification. The derived state of this character is found in Limnoscelis (Berman et al., 1992; Berman, 2000), basal crown-ammniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981), Westlothiana (Smithson et al., 1994), lysterophids and microsaur (Carroll & Gaskill, 1978; Wellstead, 1991). However, Berman (2000) postulated that the microsaur supraoccipital is not homologous with that of amniotes. Our treatment of this element is more conservative, but we acknowledge several merits in Berman's (2000) proposal (see also discussion of Cardiocephalus therein). According to Berman (2000), the bone conventionally referred to as a supraoccipital in many microsaur and lysterophid derives from the tectum posterius, and not from the tectum synoticum as in other taxa. Recoding the occurrence of a supraoccipital according to Berman's (2000) suggestion (and imposing an unknown condition for Westlothiana) does not affect the results of the analysis, but restricts the presence of a separately ossified supraoccipital to crown-ammniotes and Limnoscelis only.

Exoccipitals

161. EXOCC 2. Absence (0) or presence (1) of condition: exoccipitals enlarged, to form flattened, widely spaced double occipital condyles. This character is treated separately from characters 162 and 164 below. It is observed in scincosaurids and diplocaulids (Beerbower, 1963; A. C. Milner, 1980; Bossy & Milner, 1998), in which the condylar surfaces are transversely expanded and extremely flattened dorsoventrally.

162. EXOCC 3. Absence (0) or presence (1) of condition: exoccipitals forming continuous, concave, strap-shaped articular surfaces with basioccipital. A strap-shaped, transversely concave articular surface of the occiput is found exclusively in microsaur and lysterophid (Carroll & Gaskell, 1978; Wellstead, 1991).

163. EXOCC 4. Absence (0) or presence (1) of condition: exoccipitals forming continuous, concave, strap-shaped articular surfaces with basioccipital. A strap-shaped, transversely concave articular surface of the occiput is found exclusively in microsaur and lysterophid (Carroll & Gaskell, 1978; Wellstead, 1991).

164. EXOCC 5. Absence (0) or presence (1) of condition: exoccipitals enlarged and appressed to each other, so as to obliterate basioccipital posterior surface. The derived condition characterizes a more restricted set of taxa than that implied by character 162 above, including dissorophids, albanerpetontids and crown-lissamphiubans.

Basioccipital

165. BASOCC 1. Basioccipital notochordal (0) or not (1). Following Clack (1998e, 2001), a notochordal basioccipital is primitively present in Acanthostega, Ichthyostega and Crassigyrinus. Under DELTRAN, the plesiomorphic condition appears to be a transitional feature of stem-tetrapods, implying parallel acquisitions of the derived state in Greererpeton (Smithson, 1982) and in a clade consisting of baphetids plus crown-tetrapods. Under ACCTRAN, the plesiomorphic state of Crassigyrinus appears as a reversal.

166. BASOCC 5. Articular surface of basioccipital not convex (0) or convex (1). A convex basioccipital is usually considered to be a shared derived character of crown-ammniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981), but a less pronounced version of their ‘bulbous’ basioccipital articular surface is present in diadectomorphs (Romier, 1946; Fracasso, 1987; Berman et al., 1998; Berman, 2000) [see also Gauthier et al. (1988b) and Carroll (1991b)].

167. BASOCC 6. Absence (0) or presence (1) of condition: basioccipital circular and recessed. Although usually regarded as an aistopod synapomorphy (Carroll, 1998; see also Anderson (in press)), a basioccipital with a recessed posterior surface for a condylar process of the first cervical vertebra is also reported in Adelogyrinus (Andrews & Carroll, 1991).

Opisthotic

168. OPT 2. Absence (0) or presence (1) of condition: opisthotic forming thick plate with supraoccipital, separating exoccipitals

Parasphenoid

169. **PASPHE** 1. Parasphenoid without (0) or with (1) elongate, strat-like cultriform process. A parallel-sided, strat-like cultriform process is a plesmospongy feature (Milner, 1988, 1990, 1993, 2000), although its presence is also recorded in coleosteids (Smithson, 1982; Hook, 1983), *Microbrachis* (Carroll & Gaskill, 1978) and *Pytonius* (Bossy & Milner, 1998).

170. **PASPHE** 3. Parasphenoid without (0) or with (1) posterolaterally directed, ventral thickenings (ridges ending in basal tubera). The occurrence of longitudinal ridges on the parasphenoid is documented in *Crassigyrinus* (Clack, 1998c), *Eucritta* (Clack, 2001), embolomeres (Panchen, 1972, 1977; Holmes, 1984, 1989; Smithson, 1985; Clack, 1987a), seymouriamorphs (White, 1939; Bystrow, 1944; Laurin, 1996b; Klembara, 1997), diadectomorphs (Romer, 1946; Fracasso, 1987; Berman et al., 1998) and crown-ammniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981).

171. **PASPHE** 6. Parasphenoid without (0) or with (1) single median depression. A shallow depressed area occupies a subcentral position in the posterior plate of the parasphenoid of *Crassigyrinus* (Clack, 1998c), *Eucritta* (Clack, 2001) and several stem-ammniotes, including *Caenorhachis* (Holmes & Carrol, 1977; Ruta et al., 2001), embolomeres (Panchen, 1972, 1977; Holmes, 1984, 1989; Smithson, 1985; Clack, 1987a), *Kotlassia* (Bystrow, 1944), *Diodectes* (Berman et al., 1998), basal crown-ammniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981) and *Westlothiana* (Smithson et al., 1994).

172. **PASPHE** 7. Parasphenoid without (0) or with (1) paired lateral depressions. In *Greererpeton* (Smithson, 1982), baphetids (Beaumont, 1977), *Cocclinosauria* (Godfrey & Holmes, 1995) and *Micraroter* (Carroll & Gaskill, 1978), the posterior plate of the parasphenoid shows two shallow, anteroposteriorly elongate depressions (Coates, 1996; Clack, 1998c, 2001).

173. **PASPHE** 9. Ventral cranial fissure not sutured (0), sutured but traceable (1), or eliminated (2). Coding of this character follows Clack (1998c, 2001). Among ingroup taxa, *Ichthyostega* shows the plesiomorphic condition, whereas state 1 occurs in *Acanthostega* and *Crassigyrinus*.

174. **PASPHE** 11. Parasphenoid without (0) or with (1) anterolateral wings projecting anterior to cultriform insertion. In *Apateon* (Schoch, 1992), *Amphibamus* (Watson, 1940), *Dolesteserpent* (Bolt, 1969), *Karaurus* (Milner, 2000) and *Triadobatrachus* (Rocek & Rage, 2000b), the basipterygoid processes extend considerably laterally and slightly anterior to the proximal insertion of the cultriform process, so that the anterior margin of the para-sasphenoid appears shallowly concave.

175. **PASPHE** 12. Parasphenoid without (0) or with (1) triangular denticule patch with raised margins at base of cultriform process. A triangular patch of denticles with distinct, raised margins is observed in *Coelchoidea* (Godfrey & Holmes, 1995), *Dolesteserpent* (Holmes et al., 1998), *Eoscorpus* (Daly, 1994) and *Dolesteserpent* (Bolt, 1969).

176. **PASPHE** 13. Absence (0) or presence (1) of condition: parasphenoid much wider than long immediately behind basal articulation. The derived condition of this feature is shared by derived dissorophoids (Bolt, 1969, 1977, 1979, 1991; Boy, 1972, 1986, 1995), albanerpetontids (Gardner, 2001) and crown-lissamphibians (Schoch, 1992, 1995, 1998; Carroll, 2000; Milner, 2000; Rocek and Rage, 2000b), but it is found also in *Isodectes* (Sequeira, 1998) and *Batropetes* (Carroll, 1991a). In all these taxa, the posterior plate of the parasphenoid is at least 25% wider than long and subrectangular or subtrapezoidal in outline.

(d) Lower jaw

Jaw articulation

177. **JAW ART** 1. Jaw articulation lying behind (0), level with (1) or anterior to (2) occiput. No coherent set of internested state changes can be detected for this character. The plesiomorphic state, related or not to the presence of an elongate suspensorium, is widespread among stem-group taxa and several temnospondyls, but the two derived states occur among trimerorhachoids and some dissorophoids. State 2 is found in several primitive crown-lissamphibians, as well as in diplocaulids, some aistopods, lysorophids, various tuditanomorphs and few microbrachomorphs. The plesiomorphic condition characterizes also the basal portion of the amniote stem-group, few tuditanomorphs and some urocerdylids. State 1 occurs in seymouriamorphs, diadectomorphs, crown-ammniotes, *Westlothiana* and some lepospondyls. Coding follows Clack (1998c, 2001), Paton et al. (1999) and Laurin (1998b).

Parasymphysial plate

178. **PSYM** 1. Presence (0) or absence (1) of parasymphysial plate. A parasymphysial plate is ubiquitous among stem-tetrapods, such as *Fenestra* (Ahlberg et al., 1994),
Acanthostega (Ahlberg & Clack, 1998), Ichthyostega (Jarvik, 1980, 1996), Greererpeton (Bolt & Lombard, 2001), Crassigyrinus (Ahlberg & Clack, 1998), Whatheeria (Lombard & Bolt, 1995) and baphetids (Beaumont, 1977; Ahlberg & Clack, 1998). It is also present in the basal part of the amniote stem-group, in Caerorhachis (Holmes & Carroll, 1977; Ruta et al., 2001), Archeria (Holmes, 1989) and Pholiderpeton statigerum (Clack, 1987a). Some mandibular fragments of Protogerovinus, originally figured by Holmes (1984), show a disrupted, denticle-covered area of bone near the symphysis; the latter may represent a parasympophysial plate, although evidence is ambiguous. Whether a parasympophysial plate is present in Anthracosaurus is uncertain (Panchen, 1977).

180. PSYM 3. Parasympophysial plate without (0) or with (1) tooth row. A tooth row on the parasympophysial plate is observed in Ventastega (Ahlberg et al., 1994), Acanthostega (Ahlberg & Clack, 1998) and Whatheeria (Lombard & Bolt, 1995).

181. PSYM 4. Parasympophysial plate with (0) or without (1) denticles. Among the ingroup taxa, clusters of denticles on the parasympophysial plate are observed in Acanthostega (Ahlberg & Clack, 1998) and, possibly, Caerorhachis (Holmes & Carroll, 1977; Ruta et al., 2001).

Dentary

182. DEN 1. Dentary with (0) or without (1) accessory tooth row. Within the crown-group, accessory tooth rows are recorded in Pantylus and Captorhinus (Fox & Bowman, 1966; Carroll & Gaskill, 1978).

183. DEN 2. Dentary with (0) or without (1) anterior fang pair. The loss of anterior dentary fangs is observed in Acheirola (Olson, 1941), some derived amphibamids (Bolt, 1969), albanerpetontids (Gardner, 2001), crown-lissamphibians (Carroll, 2000; Milner, 2000), several embolomerses such as Anthracosaurus (Panchen, 1977), Pholiderpeton attheyi (Panchen, 1972) and Archeria (Holmes, 1989), gephyrostegids (Carroll, 1970), seymouriamorphs (White, 1939; Bystrow, 1944; Laurin, 1996b; Klembara, 1997), Diadectes (Romer, 1946; Berman et al., 1998), Paleothyris and Petrolacosaurus (Clark & Carroll, 1973; Reisz, 1977, 1981), Westlothiana (Smithson et al., 1994) and the majority of elopospondyls, except pantyliids, Microbrachis and, possibly, Acherontiscus (Carroll, 1969b; Carroll & Gaskill, 1978; Berman et al., 1988).

184. DEN 3. Dentary with (1) or without (0) chamfered ventral margin. A chamfered ventral margin of the dentary has been documented only in Metasygnathus (not included in our analysis), Ventastega and Acanthostega (Ahlberg et al., 1994; Ahlberg & Clack, 1998).

185. DEN 4. Dentary without (0) or with (1) U-shaped notch for premaxillary tasks. The occurrence of a deep, smooth-surfaced notch near the anterior end of the lateral surface of the dentary is an apomorphy of colosteids (Smithson, 1982; Godfrey, 1989; Bolt & Lombard, 2001).

186. DEN 7. Dentary toothed (0) or toothless (1). A toothless dentary is autopomorphic for salientians (Milner, 1988; Rocek & Rage, 2000).

187. DEN 8. Dentary length greater (0) or smaller (1) than half the length between snout and occiput. The derived condition of an abbreviated, stout dentary is found in White, 1939; Batropetes (Carroll, 1991a) and Brachydeictes (Wellstead, 1991).

Splenial

188. SPL 2. Absence (0) or presence (1) of condition: rearmost extension of mesial lamina of splenial closer to anterior margin of adductor fossa than to anterior end of jaw. The derived state of this character (see also Ruta et al., 2001) is widespread in the amniote branch of the tetrapod tree [notable exceptions are Phlegethontia (Anderson, in press), Pholiderpeton attheyi (Panchen, 1972) and Rhynchonkos (Carroll & Gaskill, 1978)]. It is also observed in Greererpeton (Bolt & Lombard, 2001), Crassigyrinus (Ahlberg & Clack, 1998) and Megalocephalus (Beaumont, 1977; Ahlberg & Clack, 1998).

189. SPL 3. Absence (0) or presence (1) of suture between splenial and anterior coronoid. The plesiomorphic state of this character, as found in the outgroups, is also present in Acanthostega and Crassigyrinus (see Ahlberg & Clack, 1998).

190. SPL 4. Absence (0) or presence (1) of suture between splenial and middle coronoid. The contact between the splenial and the middle coronoid occurs, under ACCTRAN optimization, in edopoids (Godfrey & Holmes, 1995), trimerorhachoids (Case, 1935), Phonerpeton (Dilkes, 1990), embolomerses other than Anthracosaurus (Panchen, 1972, 1977; Holmes, 1984, 1989; Smithson, 1985; Clack, 1987a), Gephyrostegus (Carroll, 1970; Ahlberg & Clack, 1998), Diacinosaurus (Klembara, 1997), Seymouria (White, 1939; Laurin, 1996b) and Rhynchonkos (Carroll & Gaskill, 1978).

Postspenial

191. POSPL 1. Presence (0) or absence (1) of postspenial. A separately ossified postspenial is absent in albanerpetontids (Gardner, 2001), crown-lissamphibians (Schoch, 1998; Carroll, 2000; Milner, 2000; Rocek &

192. POSPL 2. Postspenial without (0) or with (1) mesial lamina. Under ACCTRAN, a mesial lamina of the postspenial is recorded in all tetrapods more crownward than Crassigyrinus (Ahlberg & Clack, 1998), although a reversal to the plesiomorphic condition characterizes Gephyrostegus (Carroll, 1970) as well as lepospondyls other than microsauras.

193. POSPL 3. Postspenial with (0) or without (1) pit line. Following Ahlberg et al. (1994) and Ahlberg & Clack (1998), absence of a postspenial pit line is recorded in all tetrapods more crownward than Ventastega (however, Ichthyostega is an exception; Jarvik, 1980, 1996).

Anterior coronoid

194. ANG 1. Presence (0) or absence (1) of angular. A separately ossified angular is absent in Phlegethontia (Anderson, in press), and crown-lissamphibians except Karaurus (Milner, 1988, 2000).

195. ANG 2. Angular without (0) or with (1) mesial lamina. Following Ahlberg & Clack (1998), the occurrence of an angular mesial lamina characterizes all tetrapods more crownward than Tulerpeton, although Gephyrostegus (Carroll, 1970) shows a reversal to the plesiomorphic condition.

196. ANG 3. Angular contacting prearticular (0) or not (1). The derived feature of this character is apparently autapomorphic for Acanthostega (Ahlberg & Clack, 1998).

197. ANG 4. Angular not reaching (0) or reaching (1) posterior end of lower jaw. The posteriormost part of the external surface of the angular reaches the rear end of the lower jaw in Isedectes (Sequeira, 1998), dissorophids (Olson, 1941; Boy, 1972, 1987, 1995; Berman et al., 1985; Dilkes, 1990; Boy & Sues, 2000), Discosauriscus (Klembara, 1997), Seymouria (White, 1939; Laurin, 1996b), diadectomorphs (Romer, 1946; Berman et al., 1998), crown-amniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981), Westlothiana (Smithson et al., 1994) and lepospondyls (Carroll & Gaskill, 1978; Andrews & Carroll, 1991; Wellstead, 1991; Bossy & Milner, 1998; Carroll, 1998).

Surangular

198. SURANG 1. Presence (0) or absence (1) of surangular. Absence of a separately ossified surangular is recorded in albanerpetontids (Gardner, 2001), crown-lissamphibians (Carroll, 2000; Milner, 2000; Rocek & Rage, 2000b) and Phlegethontia (Anderson, in press).

199. SURANG 3. Surangular with (0) or without (1) pit line. Following Ahlberg & Clack (1998), absence of a surangular pit line is recorded in all tetrapods more crownward than Ventastega (see also Ahlberg et al., 1994).

200. SURANG 5. Absence (0) or presence (1) of condition: lateral exposure of the surangular smaller than that of the angular. In the tuditanomorphs Hapsidopareion, Cardiocephalus and Euryodus (Gregory et al., 1956; Carroll & Gaskill, 1978), the lateral surface of the surangular is a slender, dorsoventrally narrow, elongate and oblique splinter of bone situated at the posterodorsal corner of the angular.

Prearticular

201. PReART 5. Prearticular sutured with splenial (0) or not (1). In post-edopoid temnospondyls, Anthracosaurus and Pholidopteron attheyi (Panchen, 1972, 1977), the prearticular fails to contact the splenial (Ahlberg & Clack, 1998).

Anterior coronoid

202. ANT COR 1. Anterior coronoid present (0) or absent (1). The anterior coronoid is either absent as a separate ossification or of questionable identification in albanerpetontids (Gardner, 2001), crown-lissamphibians (Schoch, 1998; Carroll, 2000; Milner, 2000; Rocek & Rage, 2000b), Diadectes (Berman et al., 1998), crown-amniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981), Pantylus, Rhyynchokus (Carroll & Gaskill, 1978), lycorophids (Wellstead, 1991), Batrachiderpeton, Diploceraspis (Beerbower, 1963; Bossy & Milner, 1998) and Phlegethontia (Anderson, in press).

203. ANT COR 2. Anterior coronoid with (0) or without (1) fangs. Absence of fangs on the anterior coronoid is a character of all tetrapods more derived than Ventastega (Ahlberg & Clack, 1998); exceptions are Gereerpeton (Bolt & Lombard, 2001) and Gephyrostegus (Carroll, 1970).

204. ANT COR 3. Anterior coronoid with (0) or without (1) denticles. A patch of denticles on the anterior coronoid is documented in Grassigyirinus, Whatcheiria and crown-tetrapods (where observed) (Ahlberg & Clack, 1998).

205. ANT COR 4. Anterior coronoid with (0) or without (1) tooth row. All tetrapods more crownward than colosteid (except Whatcheiria; Lombard & Bolt, 1995) lack a tooth row on the anterior coronoid (Ahlberg & Clack, 1998).

Middle coronoid

206. MID COR 1. Middle coronoid present (0) or absent (1). The middle coronoid is either absent as a separate ossification or cannot be identified unambiguously in albanerpetontids (Gardner, 2001), crown-lissamphibians (Schoch, 1998; Carroll, 2000; Milner, 2000;

207. MID COR 2. Middle coronoid with (0) or without (1) fangs. Middle coronoid fangs are absent in all tetrapods more derived than Ventastega (Ahlberg & Clack, 1998), but Gephyrostegus shows a reversal to the plesiomorphic condition (Carroll, 1970).

208. MID COR 3. Middle coronoid with (0) or without (1) denticles. A denticle patch on the middle coronoid characterizes most Devonian taxa, Whatcheeria, baphetids and tuditanomorphs (although only Rhynchochos can be scored for this character) (Beaumont, 1977; Carroll & Gaskill, 1978; Jarvik, 1980, 1996; Ahlberg et al., 1994; Lombard & Bolt, 1995; Ahlberg & Clack, 1998).

209. MID COR 4. Middle coronoid with (0) or without (1) marginal tooth row. Ventastega (Ahlberg et al., 1994), Acanthostega (Ahlberg & Clack, 1998), Ichthyostega (Jarvik, 1980, 1996), Whatcheeria (Lombard & Bolt, 1995), Trimerorhachis (Case, 1935) and Rhynchochos (as well as remaining tuditanomorphs under A) show a tooth row on the middle coronoid (Carroll & Gaskill, 1978; Ahlberg & Clack, 1998).

Posterior coronoid

210. POST COR 1. Posterior coronoid present (0) or absent (1). The posterior coronoid is absent as a separate ossification, or cannot be identified unambiguously, in lycorhoides (fide Wellstead, 1991), Sauropleura (Bossy & Milner, 1998), Phlegethonida (Anderson, in press), albanerpetontids (Gardner, 2001) and crown-lissamphibians (Carroll, 2000; Milner, 2000; Rocé & Rage, 2000). However, we do point out recent contributions by Schoch (1998) bearing on the issue of identification of the caudate coronoid as the posterior coronoid.

211. POST COR 2. Posterior coronoid with (0) or without (1) fangs. Following Ahlberg & Clack (1998), absence of fangs on the posterior coronoid characterizes all post-panderichthyid tetrapods.

212. POST COR 3. Posterior coronoid with (0) or without (1) denticles. A patch of denticles occurs in colosteoids, all temnospondyls in which the third coronoid is observed, most stem-amniotes and several lepospondyls (it is absent, however, in Pantylus and Diplacodens; Beerbower, 1963; Carroll & Gaskill, 1978). Panderichthys, Devonian tetrapods, Whatcheeria, baphetids and crown-amniotes exhibit a denticle-less posterior coronoid (Ahlberg & Clack, 1998).

213. POST COR 4. Posterior coronoid with (0) or without (1) tooth row. A tooth row is primitively present in several Devonian taxa, such as Ventastega (Ahlberg et al., 1994), Acanthostega (Ahlberg & Clack, 1998) and Ichthyostega (Jarvik, 1980, 1996), but is also documented in Whatcheeria (Lombard & Bolt, 1995), Trimerorhachis (Case, 1935), Diplacodens (Beerbower, 1963) and Anthracosaurus (Panchen, 1977).

214. POST COR 5. Posterior coronoid without (0) or with (1) posterior dorsal process. In its derived condition, this character is present in the majority of crown-tetrapods (Ahlberg & Clack, 1998), except in the diplocaulid Batracitherium (Bossy & Milner, 1998) and in the embolomeres Anthracosaurus (Panchen, 1977), Pholiderpeton attheyi (Panchen, 1972) and Proterogyrinus (Holmes, 1984).

215. POST COR 6. Posterior coronoid not exposed (0) or exposed (1) in lateral view. The posterior coronoid is visible in lateral aspect, immediately posterodorsal to the rearmost end of the dentary, in Greererpeton (Bolt & Lombard, 2001), Whatcheeria (Lombard & Bolt, 1995), some temnospondyls (e.g. Isoedectes, Eryops, Micromelerpeton, Leptorophus, Schoenfelderpeton; Sawin, 1941; Boy, 1972, 1987, 1995; Sequeira, 1998; Boy & Sues, 2000), some embolomeres as Archeria (Holmes, 1989) and Pholiderpeton scorigerum (Clack, 1987 a; Ahlberg & Clack, 1998), gephyrostegids (Carroll, 1970), seymouriamorphs (White, 1939; Byströw, 1944; Laurin, 1996 b; Klembara, 1997; Ahlberg & Clack, 1998), diadectomorphs (Berman et al., 1998) and primitive crown-amniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981).

216. POST COR 7. Posterodorsal process of posterior coronoid not contributing (0) or contributing (1) to tallest point of lateral margin of adductor fossa (‘surangular’ crest). Where present, the posterodorsal process of the posterior coronoid may extend rearward and dorsiward to the point of maximum elevation of the ‘surangular’ crest. Under ACCTRAN, the derived state of this character is found in temnospondyls more derived than trimerorachiids (Sawin, 1941; Boy, 1972, 1987, 1995; Dilkes, 1990; Boy & Sues, 2000), in stem-amniotes more derived than gephyrostegids (White, 1939; Byströw, 1944; Laurin, 1996 b; Klembara, 1997; Ahlberg & Clack, 1998), diadectomorphs (Berman et al., 1998) and in some basal crown-amniotes (Fox & Bowman, 1966; Clark & Carroll, 1973), although not in Petrolacosaurus (Reisz, 1977, 1981). It is also recorded in Microbrachis and Pantylus, although the situation of other microsaurs is uncertain (Carroll & Gaskill, 1978).

Adductor fossa

217. ADD FOS 1. Adductor fossa facing dorsally (0) or mesially (1). A mesially facing adductor fossa occurs in baphetids and all crown-tetrapods in which the
posterior part of the mesial surface of the lower jaw is observed. Coding for this character follows Ahlberg & Clack (1998).

(e) Teeth

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
<th>Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>218. TEETH 1</td>
<td>Absence (0) or presence (1) of pedicely on marginal teeth.</td>
<td>(0) or (1)</td>
</tr>
<tr>
<td>219. TEETH 2</td>
<td>Marginal teeth monocuspoid (0) or multicuspid (1). Multicuspid teeth characterize different tetrapod groups, but the position and number of the cusps vary (Carroll, 1991a; Gardner, 1999, 2001). For this reason, we coded for the ‘multicuspid’ condition separately from the condition ‘two cuspules labiolingually arranged’, detailed in the following character. We also note that in several Permo-Carboniferous and Triassic stem-amniotes, the marginal teeth show several cusps (Ivakhnenko, 1987). Laurin (1998b) did not distinguish between the mesiolateral cusps shown by brachystelechids and the labiolingual cusps of dissorophoids/lissamphibians, thus conflating under the same state (multicuspid) different morphological patterns.</td>
<td>(0) or (1)</td>
</tr>
<tr>
<td>220. TEETH 3</td>
<td>Marginal teeth without (0) or with (1) two cuspules labiolingually arranged. This character is present in some dissorophoids, notably Amphibamus and Doloserpton (Bolt, 1969, 1977, 1979, 1991; Milner, 1988, 1990, 1993, 2000; Trueb & Cloutier, 1991), and is shared with crown-lissamphibians, although only Eocacilia (Carroll, 2000) and Valdoriton (Evans & Milner, 1996) could be scored for the presence of pedicely.</td>
<td>(0) or (1)</td>
</tr>
<tr>
<td>221. TEETH 5</td>
<td>Dentary teeth not larger (0) or larger (1) than maxillary teeth. Dentary teeth are distinctly larger than maxillary teeth in colosteids (Smithson, 1982;Hook, 1983), but this condition is achieved in parallel by the temnospondyls Isodectes (Sequeira, 1998) and Balanerpeton (Milner & Sequeira, 1994).</td>
<td>(0) or (1)</td>
</tr>
<tr>
<td>222. TEETH 6</td>
<td>Marginal tooth crowns not chisel-tipped (0) or chisel-tipped (1). The crown tips of the marginal teeth are chisel-shaped in adelospondyls (Andrews & Carroll, 1991), as well as in some embolomeres, notably Pterogyrinus (Holmes, 1984), Pholiderpeton attheyi (Panchen, 1972, 1980), P. scutigerum (Clack, 1987a) and Archeria (Holmes, 1989).</td>
<td>(0) or (1)</td>
</tr>
<tr>
<td>223. TEETH 7</td>
<td>Marginal tooth crowns without (0) or with (1) dimple. According to Andrews & Carroll (1991), the presence of an anteroposteriorly elongate depression, or dimple, on the proximal half of the labial and lingual surfaces of the tooth crowns is regarded as a diagnostic feature of adelospondyls (see also character 222).</td>
<td>(0) or (1)</td>
</tr>
</tbody>
</table>

(2) Postcranial skeleton

(a) Pectoral girdle

Cleithrum

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
<th>Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>225. CLE 1</td>
<td>Absence (0) or presence (1) of T-shaped dorsal expansion of cleithrum. A robust, T-shaped expansion of the dorsal portion of the cleithrum is an apomorphy of diplacaulid nectrideans (A.C. Milner, 1980; Bossy & Milner, 1998).</td>
<td>(0) or (1)</td>
</tr>
<tr>
<td>226. CLE 2, CLE 3</td>
<td>Cleithrum with (0) or without (1) postbranchial lamina. As discussed by Coates (1996), a postbranchial lamina is primitively retained in Devonian taxa (Acanthostega, Ichthyostega) and Greererpeton, and may be present also in Whatcheeria [but see Coates (1996), Lombard & Bolt (1995) and Bolt & Lombard (2000)].</td>
<td>(0) or (1)</td>
</tr>
<tr>
<td>227. CLE 3, CLE 4</td>
<td>Cleithrum co-ossified with (0) or separate from (1) scapulocoracoid. The derived state of this character [coding based on Carroll (1995), Coates (1996), Clack (1998c, 2001) and Laurin (1998b)] is found in Tulerpeton and all post-Devonian tetrapods (Lebedev & Coates, 1995).</td>
<td>(0) or (1)</td>
</tr>
</tbody>
</table>

Clavicle

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
<th>Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>228. CLI 3</td>
<td>Clavicles meet anteriorly (0) or not (1). The condition of anteriorly separated clavicles is widespread among early tetrapods; it is found in Acanthostega, Ichthyostega, bathypetes, most temnospondyls and the vast majority of ‘reptiliomorphs’, except seymouriamorphs (White, 1939; Bystrow, 1944; Laurin, 1995, 1996b; Klembara & Bartik, 2000), some tuditanomorphs (Carroll & Gaskill, 1978), Scincosaurus and diplacaulid nectrideans (A.C. Milner, 1980; Bossy & Milner, 1998). The present character has been scored as unknown in Grassigyrinus (but see Clack, 1998c, 2001).</td>
<td>(0) or (1)</td>
</tr>
</tbody>
</table>

Interclavicle

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
<th>Codes</th>
</tr>
</thead>
</table>
| 229. INTCLA 1 | Absence (0) or presence (1) of condition: posterior margin of interclavicle drawn out into parasternal process. This character is widespread among stem-tetrapods (Acanthostega, Ichthyostega, Tulerpeton, Grassigyrinus, Whatcheeria) and several ‘reptiliomorphs’ (except for lepospondyls other than microsaurs) (White, 1939; Bystrow, 1944; Carroll & Gaskill, 1978; Jarvik, 1980, 1996; Carroll, 1995; Laurin, 1995, 1996b; Lebedev &
Coates, 1995; Lombard & Bolt, 1995; Coates, 1996; Klembara & Bartík, 2000; Smithson, 2000).

231. INTCLA 3. Absence (0) or presence (1) of condition: interclavicle wider than long. This is one of several characters (e.g. see Clack, 1998c, 2001) describing the overall shape of the interclavicle. The occurrence of the derived state matches that of the previous character to a large extent; however, it is not found in the majority of lepospondyls, basal ‘reptiliomorphs’ (embolomeres and gephyrostegids) and most temnospondyls (Ecotelsonia, Apaton and Schoenfelderpeton are notable exceptions).

232. INTCLA 4. Interclavicle rhomboidal with posterior half longer (0) or shorter (1) than anterior half. See also Clack (1998c, 2001). The derived state is shown by colosteids, some trimerorhachoids and lepospondyls other than microsaur and lorisorphids.

Scapulocoracoid

233. SCACOR 1. Absence (0) or presence (1) of separate scapular ossifications. Based on Carroll (1995), Lebedev & Coates (1995), Coates (1996), Clack (1998c) and Laurin (1998c), the derived state of this character is found sporadically among tetrapods, and does not identify monophyletic groups with the exception of the clade encompassing Discosauriscus and Seymouria.

234. SCACOR 2. Glenoid subterminal (0) or not (1) (scapulocoracoid extending central to posteroventral margin of glenoid). Reisz (1981) noted this feature in several basal crown-amniotes, but its occurrence is more widespread (e.g. Ichthyostega, Tulerpeton, several lepospondyls, derived temnospondyls).

235. SCACOR 3. Presence (0) or absence (1) of enlarged glenoid foramen. The derived condition of this character is found in Acanthostega, derived temnospondyls and most lepospondyls (Carroll & Gaskill, 1978; Coates, 1996).

236. SCACOR 4. Absence (0) or presence (1) of ventromesially extended infraglenoid buttress. The derived state (where observed) is found in all tetrapods more derived than Acanthostega (Lebedev & Coates, 1995; Coates, 1996).

Anocleithrum

237. ANOCLE 1. Presence (0) or absence (1) of anocleithrum. The distribution of the anocleithrum among early tetrapods is rather sparse. Among Devonian post-panderichthyid tetrapods, it is found in Acanthostega and Tulerpeton (Lebedev & Coates, 1995; Coates, 1996), whereas among post-Devonian taxa, it has been recorded so far in Pholidoptera scutigerum (Clack, 1987b) and Discosauriscus australicus (Klembara & Bartík, 2000). J. Klembara and M. Ruta (personal observations) have identified a possible anocleithrum in a small specimen of the Upper Carboniferous-Lower Permian Seymouriamorph Utigenia.

(b) Forelimb

Humerus

238. HUM 1. Latissimus dorsi process offset anteriorly (0) or aligned with ectepicondyle (1). Coding for this character is based on Coates (1996; see also Clack, 1998c, 2001). The primitive condition is found in Acanthostega (Coates, 1996), Whatcheiria (Lombard & Bolt, 1995), baphetids (Milner & Lindsay, 1998), Discosauriscus (Klembara, 1997; but see also Klembara et al. (2001) for an alternative interpretation of this process in Seymouria), Pantylus (Carroll & Gaskill, 1978) and diadectomorphs (Heaton, 1980; Berman & Sumida, 1990; Sumida, 1997; Berman et al., 1998).

239. HUM 2. Absence (0) or presence (1) of distinct supinator process projecting anteriorly. A distinct, robust and anteriorly projecting supinator process occurs in some temnospondyls (especially heavily built and terrestrial forms), some Seymouriamorphs, diadectomorphs, several primitive crown-amniotes and some nectrideans (Miner, 1925; Olson, 1941; Bystrow, 1944; Heaton, 1980; Reisz, 1977, 1981; Sumida, 1997; Berman et al., 1998; Bossy & Milner, 1998).

240. HUM 3. Presence (0) or absence (1) of central humeral ridge. Embolomeres are the only group among crown-tetrapods that retain such a ridge, which is otherwise found in some stem-tetrapods (Jarvik, 1980, 1996; Panchen, 1985; Godfrey, 1989; Lebedev & Coates, 1995; Coates, 1996; Milner & Lindsay, 1998).

241. HUM 4. Latissimus dorsi process confluent with (0) or distinct from (1) deltopectoral crest. The description of this character is based on data from Lebedev & Coates (1995) and Coates (1996). The derived state is observed in all tetrapods more derived than Tulerpeton.

242. HUM 5. Presence (0) or absence (1) of entepicondylar foramen. See Carroll (1995), Lebedev & Coates (1995), Coates (1996), Clack (2001) and Laurin (1998b) for an analysis of the distribution of this character. The entepicondylar foramen is absent in some tundamorphs, most nectrideans and most temnospondyls (for exceptions, see Carroll & Gaskill, 1978).
326 Marcello Ruta, Michael I. Coates and Donald L. J. Quicke

243. HUM 6. Presence (0) or absence (1) of ectepicondylar foramen. The ectepicondylar foramen is absent in crown-tetrapods as well as in Tulerpeton (Lebedev & Coates, 1995), Greererpeton (Godfrey, 1989), Whatcheria (Lombard & Bolt, 1995) and baphetids (Milner & Lindsay, 1998).

245. HUM 8. Absence (0) or presence (1) of condition: ectepicondylar ridge extending distally to reach distal humeral end. The derived state of this character is found in panderichthyids and all more crownward tetrapods (Vorobyeva, 1977, 1992, 2000; Vorobyeva & Schulzke, 1991).

246. HUM 9. Distal extremity of ectepicondylar ridge aligned with ulnar condyle (0), between ulnar and radial condyles (1), or aligned with radial condyle (2). Tulerpeton (Lebedev & Coates, 1995), colosteids (Godfrey, 1989), Whatcheria (Lombard & Bolt, 1995) and Eoherpeton (Smithson, 1985) possess state 1. State 2 characterizes most crown-tetrapods.

247. HUM 10. Humerus without (0) or with (1) expanded extremities (waisted). Regardless of the degree of torsion along the axis of the shaft, expansion of the humeral head and humeral condylar extremity occurs in temnospondyls, crown-lissamphibians, several ‘reptilomorphs’ (but not embolomeres and gephyrostegids), crown-annamies, most microsaurids (except Microbrachis), lycospondyls and Scincosaurus (Wellstead, 1991; Coates, 1996; Bossy & Milner, 1998; Clack, 1998c, 2001).

248. HUM 11. Radial condyle terminal (0) or ventral (1). Except for Ichthyostega (Jarvik, 1980, 1996), stem-tetrapods show a terminal radial condyle, as do some temnospondyls and basal ‘reptilomorphs’.

249. HUM 12. Humerus slender and elongate, with length less (0) or more (1) than three times the diameter of its distal end. The derived state of this character applies to several derived dissorophoids and crown-lissamphibians (Milner, 1988, 1990, 1993), but it is known also in some crown-annamites (Clark & Carroll, 1973; Reisz, 1977, 1981; Carroll, 1991b).

250. HUM 13. Posterior lateral margin of entepicondyloid lying distal with respect to plane of radial-ulnar facets (0) or not (1). The primitive condition of the entepicondyle is found in the outgroups (Andrews & Westoll, 1970; Vorobyeva, 1977, 1992, 2000), but occurs also in some temnospondyls, such as Eryops and tretoamphids (Miner, 1923; Olson, 1941).

251. HUM 14. Posterior lateral margin of entepicondyloid markedly concave (0) or not (1). The derived state is found in Euutherpeton and Acheloma only (Andrews & Westoll, 1970; Olson, 1941).

252. HUM 15. Width of entepicondylar greater (0) or smaller (1) than half humeral length. In its derived state, this character is acquired in parallel by the clade encompassing derived dissorophoids plus crown-lissamphibians (Milner, 1988, 1990, 1993; Boy & Sues, 2000), Pholidopteridae (Clack, 1987a) among embolomeres, crown-annamies, most lissamphibians, except panyspid and ostodolepids todontamorphs, diplocaulids and Urocydus (Carroll & Gaskill, 1978; A. C. Milner, 1980; Bossy & Milner, 1998).

253. HUM 16. Portion of humeral shaft length proximal to entepicondylar smaller (0) or greater (1) than humeral head width. The derived condition relates to elongation of the humerus in various stem-annamies (exceptions are Proterogyrinus, seymouramorphs and diadectomorphs), crown-annamies and most lissamphibians other than diplocaulids and Urocydus (White, 1939; Bystrow, 1944; Fox & Bowman, 1966; Reisz, 1977, 1981; Heaton, 1980; A. C. Milner, 1980; Holmes, 1984; Laurin, 1995, 1996b; Sumida, 1997; Bossy & Milner, 1998; Klembara & Bartik, 2000). It is also known in trimerorhachids, dissorophoids and crown-lissamphibians.

254. HUM 17. Presence (0) or absence (1) of accessory foramina on humerus. Following Lebedev & Coates (1995), Coates (1996) and Clack (1998c, 2001), the primitive state of this character is observed in all tetrapods more derived than Tulerpeton. Crassigyrinus is, however, a notable exception (Panchen, 1985).

255. HUM 18. Humerus length greater (0) or smaller (1) than the length of two and a half mid-trunk vertebrae. Tulerpeton, colosteids and Crassigyrinus exhibit the plesiomorphic condition, which also appears as a reversal in Westlothiana and lepospondyls (except for tuditanomorphs) (Hook, 1983; Godfrey, 1989; Smithson et al., 1994; Lebedev & Coates, 1995; Coates, 1996).

Radius

256. RAD 1. Radius longer (0) or shorter (1) than humerus. Most post-panderichthyid tetrapods exhibit the derived condition (Coates, 1996). The plesiomorphic state appears in some diplocaulids (A. C. Milner, 1980; Bossy & Milner, 1998).

257. RAD 2. Radius longer than (0), as long as (1), or shorter than (2) ulna. The derived conditions expressed by states 1 and 2 overlap each other in several regions of the tree,
including the lissamphibian stem (state 1 occurs in crown-lissamphibians and some dissorophoids as well as among basal temnospondyls) and the lepospondyl branch (in some microbrachomorphs and most neocridians).

Ulna
258. **ULNA.** Absence (0) or presence (1) of olecranon process. An olecranon process [see coding in Coates (1996), Clack (1998c, 2001) and Laurin (1998b)] occurs in some Devonian and most post-Devonian taxa. It is absent in some tetrapods that possess poorly developed and/or miniaturized limbs.

(c) Pelvic girdle

Ilium
259. **ILI.** Absence (0) or presence (1) of dorsal iliac process. Following Lebedev & Coates (1995), Coates (1996), Clack (1998c, 2001) and Laurin (1998b), the presence of a dorsal iliac process is primitive for tetrapods (Devonian and various basal Carboniferous forms). Its loss or drastical reduction is documented in temnospondyls, crown-amniotes and most lepospondyls (some microsaurids represent exceptions; Carroll & Gaskill, 1978).

260. **ILI.** Absence (0) or presence (1) of transverse pelvic ridge. A transverse pelvic ridge appears in some temnospondyls (notably *Eryops* and *Dendrerpeton*; Romer, 1947; Holmes et al., 1998). It also represents a transient feature of basal stem-amniotes, in agreement with the conclusions of Coates (1996) and Ruta et al. (2001). For a discussion of the nature of the ridge and its possible homology with the iliac shelf of seymouriamorphs and diadectomorphs, see Sumida (1997) and Klembara & Bartik (2000).

261. **ILI.** Absence (0) or presence (1) of acetabulum directed anteriorly. A transverse pelvic ridge appears in some temnospondyls (notably *Eryops* and *Dendrerpeton*; Romer, 1947; Holmes et al., 1998). It represents a transient feature of basal stem-amniotes, in agreement with the conclusions of Coates (1996) and Ruta et al. (2001). For a discussion of the nature of the ridge and its possible homology with the iliac shelf of seymouriamorphs and diadectomorphs, see Sumida (1997) and Klembara & Bartik (2000).

262. **ILI.** Absence (0) or presence (1) of acetabulum directed posteriorly. This character applies exclusively to salientians (Milner, 1988; Rage & Rocek, 2000).

263. **ILI.** Acetabulum directed posteriorly (0) or laterally (1). The coding for this character is from Coates (1996) and characterizes all post- *Eusthenopteron* tetrapods (Andrews & Westoll, 1970; Vorobyeva, 1977, 1992, 2000).

Iscium
264. **ISC.** Absence (0) or presence (1) of pelvic symphysis. The distribution of this character is identical to that of the previous character.

(d) Hindlimb

Femur
265. **FEM.** Absence (0) or presence (1) of condition: internal trochanter with a distinct process. Whatcheeria, some primitive crown-lissamphibians, certain embolomeres, Seymouria and *Lamnoscelis* display the plesiomorphic condition (White, 1939; Romer, 1946; Panchen, 1972; Lombard & Bolt, 1995).

266. **FEM.** Absence (0) or presence (1) of condition: trochanter separated from femur by a distinct trough-like space. This character is based on data from Coates (1996). It appears in its derived state in certain dissorophoids and microsaurids, some ‘reptiliomorphs’ (e.g. *Caerorhachis*, *Kotlassia* and *Westlothiana*; Bystrow, 1944; Holmes & Carroll, 1977; Smithson et al., 1994; Ruta et al., 2001) and several stem-tetrapods, including *Acanthostega*, *Tulerpeton*, *Crassigyrinus*, *Whatcheeria* and coleoideids (Panchen, 1985; Godfrey, 1989; Lebedev & Coates, 1995; Lombard & Bolt, 1995).

267. **FEM.** Absence (0) or presence (1) of condition: fourth trochanter with a distinct rugose area. The character appears in stem-tetrapods and is maintained in the basal part of the stem-lissamphibian and stem-amniote trees. It is found also in some primitive crown-amniotes, such as *Captorhinus* (Fox & Bowman, 1966). It is lost in most lepospondyls, some seymouriamorphs, gephyrostegids and various primitive crown-amniotes.

268. **FEM.** Proximal end of adductor crest of femur not reaching (0) or reaching (1) midshaft length. Coates (1996) examined patterns of proximal displacement of several processes of the femur in several lineages within the tetrapod crown-group. *Whatcheeria*, some seymouriamorphs (White, 1939; Klembara & Bartik, 2000), diadectomorphs (Romer, 1946; Berman & Sumida, 1990) and Balanerpeton (Milner & Sequeira, 1994) appear to reverse to the plesiomorphic state, whereas *Greererpeton* (Godfrey, 1989) and *Crassigyrinus* (Panchen, 1985) show the derived condition.

269. **FEM.** Femur shorter than (0), as long as (1), or longer than humerus (2). *Acanthostega* (Coates, 1996), trimerorhachoids (Case, 1935), *Eocelosoria* (Berman et al., 1985) and pantyliids (Berman et al., 1988) exhibit state 1, whereas state 2 is ubiquitous among remaining tetrapods. We coded *Ichthyostega* as unknown, pending redescriptions of postcranial material showing association of anterior and posterior limbs.

Tibia
270. **TIB.** Absence (0) or presence (1) of condyle on posterior edge. The coding for this character follows Lebedev & Coates (1995) and Coates (1996). The derived condition is shown by *Tulerpeton*, *Whatcheeria* and *Westlothiana*.
(Smithson et al., 1994; Lebedev & Coates, 1995; Lombard & Bolt, 1995).

Fibula

271. **FIB 1.** Fibula not waisted (0) or waisted (1). Based on Lebedev & Coates (1995), Coates (1996) and Clack (1998c, 2001), a waisted fibula occurs in all tetrapods more crownward than Ichthyostega.

272. **FIB 3.** Absence (0) or presence (1) of ridge near posterior edge of flexor surface of fibula. This and the following characters describe conditions of the flexor surface of the fibula [see Lebedev & Coates (1995) and Coates (1996)]. Character 272 shows its derived state in Acanthostega, Crassigyrinus, Baphetes, Eryops, embolomeres, Gephyrostegus, Seymouria and Limnoscelis (White, 1939; Romer, 1946, 1947; Carroll, 1970; Panchen, 1980, 1985; Holmes, 1984, 1989; Smithson, 1985; Milner & Lindsay, 1998).

273. **FIB 4.** Absence (0) or presence (1) of rows of tubercles near posterior edge of flexor surface of fibula. The derived condition is present only in Tulerpeton (Lebedev & Coates, 1995) and Whatcheeria (Lombard & Bolt, 1995).

Tarsus

274. **TAR 1.** Absence (0) or presence (1) of ossified tarsus. All post-panderichthyid tetrapods show ossified elements in the tarsus (discussion in Coates, 1996).

275. **TAR 2.** Absence (0) or presence (1) of one proximal tarsal ossification, or presence of more than two ossifications (2). Proximal tarsal elements are observed in Acanthostega and all more derived tetrapods (Jarvik, 1980, 1996; Lebedev & Coates, 1995; Coates, 1996).

276. **TAR 3.** Tarsus without (0) or with (1) L-shaped proximal tarsal element. A proximal tarsal element with an indentation along its proximal margin (Lebedev & Coates, 1995; Coates, 1996) is found in Tulerpeton (Lebedev & Coates, 1995), several basal stem-ammniotes including embolomeres and gephyrostegids (but not seymouriamorphs; White, 1939; Carroll, 1970; Boy & Bandel, 1973; Holmes, 1984, 1989; Sumida, 1997; Berman et al., 2000; Ruta et al., 2001), Westlothiana (Smithson et al., 1994), Diadectes (Heaton, 1980; Sumida, 1997) and several primitive crown-ammniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981).

277. **TAR 4.** Absence (0) or presence (1) of distal tarsals between fibulare and digits. The derived condition of this character is found in Tulerpeton and all more crownward tetrapods [data from Lebedev & Coates (1995) and Coates (1996)].

278. **TAR 5.** Absence (0) or presence (1) of distal tarsals between tibiale and digits. The distribution of this character is identical to that of the previous character.

(e) **Axial skeleton**

Ribs

279. **RIB 2.** Cervical ribs with (0) or without (1) flattened distal ends. The coding for this character follows in part Clack (1998c, 2001). The primitive state appears to be widespread among tetrapods. The derived condition is optimized as transitional for at least part of the tetrapod stem-group (from Ichthyostega to Whatcheeria) under ACCTRAN.

280. **RIB 3.** Ribs mostly straight (0) or centrally curved (1) in at least part of the trunk. Markedly curved trunk ribs (curvature extending from proximal head to distal tip of the ribs) are found in stem-tetrapods more derived than Acanthostega [implying reversal in colosteids under ACCTRAN (see Godfrey, 1989)], as well as on the amniote branch of the tetrapod tree, including the vast majority of lepospondyls. Poorly pronounced curvature characterizes the ribs of Discosauriscus and Seymouria (White, 1939; Klembara & Bartik, 2000), derived diplocaulids (Bossy & Milner, 1998) and aı ¨stopods (McGinnis, 1967; Wellstead, 1982; Carroll, 1998; Anderson, in press). As noted by A. R. Milner (1990), a slight curvature is observed in some of the largest temnospondyls (see also Schoch & Milner, 2000).

281. **RIB 5.** Absence (0) or presence (1) of triangular spur-like posterodorsal process in at least some trunk ribs. Such a process is found uniquely in the ribs of colosteids and adelospondyls (Godfrey, 1989; Andrews & Carroll, 1991). It differs from the slender, needle-like process of certain aı ¨stopods (McGinnis, 1967).

282. **RIB 6.** Absence (0) or presence (1) of condition: elongate posterodorsal flange in midtrunk ribs. The distribution of this character overlaps that of the previous character, but it is not identical to the latter. It describes the occurrence of a sheet-like flange stretching along part of the posterodorsal margin of at least some trunk ribs, and is observed in lysorophids (Wellstead, 1991) as well as colosteids and adelospondyls (Godfrey, 1989; Andrews & Carroll, 1991).

283. **RIB 7.** Absence (0) or presence (1) of condition: longest trunk ribs poorly ossified, slender rods, the length of which is smaller than the length of three trunk vertebrae. This is one of the characters used by Milner (1988, 1990, 1993, 2000) to unite derived dissorophoids with crown-lissamphibians (see also Boy & Sues, 2000).

Cervical vertebrae

284. **CERV 1.** Atlas neural arch halves unfused (0) or fused (1). Albanerpetontids (Gardner, 1999, 2001), crown-lissamphibians (Bolt, 1991), pantylids, Rhynchohoscos (Carroll & Gaskill, 1978), Scincosaurus and diplocaulids (Bossy & Milner, 1998) display the derived condition of this feature [data from Sumida & Lombard (1991),...
Sumida et al. (1992), Carroll (1995) and Laurin (1998b)]

285. CER VER 3. Axial arch not fused (0) or fused (1) to axial (pleuro)centrum. Fusion between axial arch and centrum occurs in crown-lissamphibians, crown-amniotes, diadectomorphs, Westlothiana and most lepospondyls [data from Carroll & Gaskill (1978), Sumida & Lombard (1991), Sumida et al. (1992), Smithson et al. (1994), Carroll (1995) and Laurin (1998b)].

Trunk and tail vertebrae

286. TRU VER 1. Absence (0) or presence (1) of extra articulations above zygapophyses in at least some trunk and caudal vertebrae. The derived condition of this character unites nectrideans and aistopods, although it may not be present in all members of the latter group (A. C. Milner, 1980; Wellstead, 1982; Milner, 1993; Bossy & Milner, 1998; Carroll, 1998; Anderson, in press).

287. TRU VER 2. Absence (0) or presence (1) of condition: neural and haemal spines rectangular to fan-shaped in lateral view. This and the following two characters were used by A. C. Milner (1980), Milner (1993) and Bossy & Milner (1998) to characterize nectrideans.

288. TRU VER 3. Absence (0) or presence (1) of condition: neural and haemal spines facing each other dorsoventrally. See character 287 above.

289. TRU VER 4. Haemal spines not fused (0) or fused (1) to caudal centra. See character 287 above. The derived state is present also in Valdoritron (Evans & Milner, 1996).

290. TRU VER 5. Absence (0) or presence (1) of extra articulations on haemal spines. The derived condition is a shared feature of urocoelids [data from A. C. Milner (1980), Milner (1993) and Bossy & Milner (1998)].

291. TRU VER 6. Absence (0) or presence (1) of long, distally bifurcated transverse processes on trunk centra. The derived condition is a shared feature of Diploucrus and Diplorceraspis [data from A. C. Milner (1980), Milner (1993) and Bossy & Milner (1998)]. See also character 297 below.

292. TRU VER 7. Absence (0) or presence (1) of ossified pleurocentra. Absence of ossified pleurocentra is only documented in Pandercithys (Vorobyeva, 1992; Vorobyeva & Schultz, 1991) and Crassigyrinus (Panchen, 1985).

293. TRU VER 8. Trunk pleurocentra not fused midventrally (0) or fused (1). The derived condition characterizes Doleropetemon (Bolt, 1969; Daly, 1994), albanerpetontids (Gardner, 1999, 2001), crown-lissamphibians (Bolt, 1991), some embolomeres (Panchen, 1972; Clack, 1987a; Holmes, 1989), Solenodonsaurus (Laurin & Reisz, 1999), seymouriamorphs (White, 1939; Bystrow, 1944; Klombara & Bartik, 2000), diadectomorphs (Heaton, 1980; Sumida, 1997; Berman et al., 1998), crown-amniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981; Carroll, 1991b), Westlothiana (Smithson et al., 1994) and lepospondyls (Carroll, 1999).

294. TRU VER 9. Trunk pleurocentra not fused middorsally (0) or fused (1). Dorsal fusion of pleurocentra has been documented by Lombard & Bolt (1995) in some specimens of Whatcheeria, and is also found in albanerpetontids (Gardner, 1999, 2001), crown-lissamphibians (Bolt, 1991), some embolomeres (Panchen, 1972; Clack, 1987a; Holmes, 1989), Solenodonsaurus (Laurin & Reisz, 1999), seymouriamorphs (White, 1939; Bystrow, 1944; Klombara & Bartik, 2000), diadectomorphs (Heaton, 1980; Sumida, 1997; Berman et al., 1998), crown-amniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981; Carroll, 1991b), Westlothiana (Smithson et al., 1994) and lepospondyls (Carroll, 1999).

295. TRU VER 10. Neural spines without (0) or with (1) distinct convex lateral surfaces. ‘Swollen’ neural arches are present in seymouriamorphs (White, 1939; Bystrow, 1944; Klombara & Bartik, 2000), diadectomorphs (Heaton, 1980; Sumida, 1997; Berman et al., 1998), various basal amniotes (the condition is polymorphic for Petrolacosaurus; Reisz, 1977, 1981) and Westlothiana (Smithson et al., 1994).

296. TRU VER 11. Neural spines of trunk vertebrae not fused to centra (0) or fused (1). This character has a non-homogeneous distribution. It is observed in Doleropetemon (Bolt, 1969; Daly, 1994), albanerpetontids (Gardner, 1999, 2001), crown-lissamphibians (Bolt, 1991), Solenodonsaurus (Laurin & Reisz, 1999), some seymouriamorphs (White, 1939; Bystrow, 1944), diadectomorphs (Heaton, 1980; Sumida, 1997; Berman et al., 1998), crown-amniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981; Carroll, 1991b), Westlothiana (Smithson et al., 1994), microsaurs (except pantylids, Peladosohtis and microbrachomorphs; Carroll & Gaskill, 1978), nectrideans (A. C. Milner, 1980; Bossy & Milner, 1998) and aistopods (McGinnis, 1967; Wellstead, 1982; Carroll, 1998, 1999; Anderson, in press).

297. TRU VER 12. Absence (0) or presence (1) of bicipital rib bearers on trunk centra. Caudates and derived diplocauds possess this character (A. C. Milner, 1980; Milner, 1988; Evans & Milner, 1996; Bossy & Milner, 1998). A specialized condition of rib bearers is detailed under character 291 above.

299. TRU VER 14. Trunk intercentra not fused middorsally (0) or fused (1). The derived condition occurs in some embolomeres (Panchen, 1972; Clack, 1987a; Holmes, 1989).
300. TRU VER 15. Absence (0) or presence (1) of lateral and ventral carinae on trunk centra. Lateral and ventral elongate keels are present in the centra of lysorophids and adelospondyls (Andrews & Carroll, 1991; Wellstead, 1991).

301. TRU VER 16. Absence (0) or presence (1) of strong proximal emargination in haemal spines of posterior tail vertebrae. This character describes the proximal constriction of posterior haemal spines in the dicropods Kera-terpeton, Diceratosaurus, Diplocaulus and Diplocaulus. (A. C. Milner, 1980; Bossy & Milner, 1998).

302. TRU VER 17. Absence (0) or presence (1) of strong proximal emargination in haemal spines of anterior tail vertebrae. See also preceding character. The proximal constriction of anterior haemal spines is found in Diceratosaurus, Diplocaulus and Diplocaulus. (A. C. Milner, 1980; Bossy & Milner, 1998).

303. TRU VER 18. Absence (0) or presence (1) of striate ornament on vertebral centra. As described by A. C. Milner (1980) and Bossy & Milner (1998), striations are present on the vertebral centra of Diceratosaurus, Diplocaulus and Diplocaulus.

304. TRU VER 19. Absence (0) or presence (1) of condition: tallest ossified part of neural arch in posterior trunk vertebrae lying above posterior half of vertebral centrum. As described here, this feature occurs in Doleretpeton (Bolt, 1991; Daly, 1994), some Seymouriamorphs (White, 1939; Bystrow, 1944; Sumida, 1997), Limnoscelis (Romer, 1946), primitive crown-amniotes (Fox & Bowman, 1966; Clark & Carroll, 1973; Reisz, 1977, 1981; Carroll, 1991b, Westlothiana (Smithson et al., 1994), microsaurs (Carroll & Gaskill, 1978) and lysorophids (Wellstead, 1991).

305. TRU VER 20. Absence (0) or presence (1) of postzygapophyses on trunk vertebrae. The derived condition of this character occurs in all post-panderichthyid tetrapods (Coates, 1996).

306. TRU VER 21. Absence (0) or presence (1) of postzygapophyses on trunk vertebrae. The distribution of this character overlaps that of the preceding character (Coates, 1996), except for the occurrence of the plesiomorphic state in Crassigyrinus (Panchen, 1985) and, possibly, Trimetrodon (Case, 1935).

307. TRU VER 22. Absence (0) or presence (1) of prezygapophyses on proximal tail vertebrae. The distribution of this character overlaps that of character 305 above (Coates, 1996).

308. TRU VER 23. Absence (0) or presence (1) of postzygapophyses on proximal tail vertebrae. The distribution of this character overlaps that of character 305 above (Coates, 1996).

309. TRU VER 24. Absence (0) or presence (1) of prezygapophyses on distal tail vertebrae. The derived state of this character is found in Tulerpeton and all more derived tetrapods (Lebedev & Coates, 1995; Coates, 1996).

310. TRU VER 25. Absence (0) or presence (1) of postzygapophyses on distal tail vertebrae. The distribution of this character overlaps that of character 309 above (Coates, 1996).

311. TRU VER 26. Absence (0) or presence (1) of capitular facets on posterior rim of vertebral midtrunk centra. A capitular facet on the posterior rim of vertebral midtrunk centra is found in some tuditanomorphs, microbrachomorphs, lysorophids and adelospondyls (Carroll & Gaskill, 1978; Carroll, 1991a; Andrews & Carroll, 1991; Wellstead, 1991).

312. TRU VER 27. Height of neural arch in midtrunk vertebrae greater (0) or smaller (1) than distance between pre- and postzygapophyses. The derived state is present in microsaurs (Carroll & Gaskill, 1978; Carroll, 1991a), lysorophids (Wellstead, 1991), Westlothiana (Smithson et al., 1994), Kotlassia (Bystrow, 1944) and Captorhinus (Fox & Bowman, 1966).

(f) Digits

313. DIG 1. Absence (0) or presence (1) of digits. Dactyly (Coates, 1996) is a feature of all post-panderichthyid tetrapods, except where secondary loss of limbs occurs (aistopods).

314. DIG 2. Absence (0) or presence (1) of no more than four digits in manus. A tetradactyl manus characterizes Colosteus (fide Hook, 1983), the temnospondyliassamphian clade (Milner, 1988) and lepospondyls other than microbrachomorphs (Carroll et al., 1998).

315. DIG 3. Absence (0) or presence (1) of no more than five digits in manus. A pentadactyl manus characterizes Greererpeton (Coates, 1996) and the ‘reptiliomorph’ branch of the tetrapod tree (excluding lepospondyls).

316. DIG 4. Absence (0) or presence (1) of no more than three digits in manus. A tridactyl manus is observed in microbrachomorphs (Carroll & Gaskill, 1978).

(g) Fins

317. DOR FIN 1. Presence (0) or absence (1) of dorsal fin. A dorsal fin is lost in Panderichthys and all more crownward tetrapods (Jarvik, 1980, 1996; Lebedev & Coates, 1995; Cloutier & Ahlberg, 1996; Coates, 1996; Ahlberg & Johnson, 1998).

318. CAU FIN 1. Presence (0) or absence (1) of caudal fin. A caudal fin is lost in Tulerpeton (under ACCTRAN optimization) and all more crownward tetrapods (Jarvik, 1980, 1996; Lebedev & Coates, 1995; Cloutier & Ahlberg, 1996; Coates, 1996; Ahlberg & Johnson, 1998).

319. BAS SCU 1. Presence (0) or absence (1) of basal scutes. Basal fin scutes are lost in Panderichthys and all more crownward tetrapods (Cloutier & Ahlberg, 1996; Ahlberg & Johnson, 1998).
XIV. APPENDIX 3. DATA MATRIX

Characters are divided into groups of five, arranged in horizontal rows and numbered from left to right; bold numbers refer to characters in the leftmost position in each row; parentheses () indicate polymorphism, whereas braces { } indicate partial uncertainty; question marks denote unknown or inapplicable characters.

Acanthostega gunnari

<table>
<thead>
<tr>
<th></th>
<th>0??00</th>
<th>00010</th>
<th>?1000</th>
<th>00000</th>
<th>00010</th>
<th>00000</th>
<th>00012</th>
<th>00001</th>
<th>11100</th>
<th>00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>00000</td>
<td>00001</td>
<td>??000</td>
<td>10100</td>
<td>00000</td>
<td>00001</td>
<td>10000</td>
<td>00000</td>
<td>00010</td>
<td>00000</td>
</tr>
<tr>
<td>101</td>
<td>01110</td>
<td>00000</td>
<td>00100</td>
<td>00000</td>
<td>00000</td>
<td>00001</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>01101</td>
</tr>
<tr>
<td>151</td>
<td>00000</td>
<td>00100</td>
<td>00000</td>
<td>00000</td>
<td>00100</td>
<td>00011</td>
<td>01010</td>
<td>00000</td>
<td>01100</td>
<td>10010</td>
</tr>
<tr>
<td>201</td>
<td>00110</td>
<td>01100</td>
<td>11000</td>
<td>?0000</td>
<td>00000</td>
<td>00110</td>
<td>00001</td>
<td>00000</td>
<td>00000</td>
<td>00001</td>
</tr>
<tr>
<td>251</td>
<td>10001</td>
<td>10010</td>
<td>00111</td>
<td>11100</td>
<td>01101</td>
<td>00000</td>
<td>00000</td>
<td>00100</td>
<td>00000</td>
<td>00000</td>
</tr>
<tr>
<td>301</td>
<td>00001</td>
<td>11100</td>
<td>00100</td>
<td>011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acherontiscus caledoniae

<table>
<thead>
<tr>
<th></th>
<th>?????</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>0????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>0010</td>
<td>10000</td>
<td>?0000</td>
<td>19000</td>
<td>????</td>
</tr>
<tr>
<td>101</td>
<td>0????</td>
<td>0000{12}</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
</tr>
<tr>
<td>151</td>
<td>0????</td>
<td>0????</td>
<td>00000</td>
<td>00000</td>
<td>00100</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
</tr>
<tr>
<td>201</td>
<td>0????</td>
<td>?????</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
</tr>
<tr>
<td>251</td>
<td>0????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
</tr>
<tr>
<td>301</td>
<td>00000</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
</tr>
</tbody>
</table>

Adelogyrinus simorhynchus

<table>
<thead>
<tr>
<th></th>
<th>0??00</th>
<th>0??11</th>
<th>?1101</th>
<th>10100</th>
<th>00000</th>
<th>01000</th>
<th>00112</th>
<th>00111</th>
<th>0101</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>00000</td>
<td>10?01</td>
<td>??1??</td>
<td>?1???</td>
<td>?1???</td>
<td>??000</td>
<td>01070</td>
<td>00000</td>
<td>1??00</td>
<td>00000</td>
</tr>
<tr>
<td>101</td>
<td>0?120</td>
<td>00??0</td>
<td>00000</td>
<td>01????</td>
<td>0????</td>
<td>0????</td>
<td>0????</td>
<td>0????</td>
<td>0????</td>
<td>0????</td>
</tr>
<tr>
<td>151</td>
<td>0????</td>
<td>?????</td>
<td>0000{12}</td>
<td>01???</td>
<td>0????</td>
<td>0????</td>
<td>0????</td>
<td>0????</td>
<td>0????</td>
<td>0????</td>
</tr>
<tr>
<td>201</td>
<td>?????</td>
</tr>
<tr>
<td>251</td>
<td>?????</td>
</tr>
<tr>
<td>301</td>
<td>?????</td>
<td>1????</td>
<td>1????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
</tr>
</tbody>
</table>

Adelospondylus watsoni

<table>
<thead>
<tr>
<th></th>
<th>?????</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>0????</td>
<td>?????</td>
<td>?11?1</td>
<td>10000</td>
<td>00000</td>
<td>010?0</td>
<td>00012</td>
<td>001??</td>
<td>210?1</td>
<td>10000</td>
</tr>
<tr>
<td>151</td>
<td>10000</td>
<td>01?00</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
</tr>
<tr>
<td>201</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>00000</td>
<td>01101</td>
<td>01??0</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
</tr>
<tr>
<td>251</td>
<td>?????</td>
</tr>
<tr>
<td>301</td>
<td>?????</td>
<td>1????</td>
<td>1????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
</tr>
</tbody>
</table>

ALBANERPETONTIDAE

<table>
<thead>
<tr>
<th></th>
<th>11100</th>
<th>0??11</th>
<th>?1101</th>
<th>10101</th>
<th>01000</th>
<th>00?10</th>
<th>01?02</th>
<th>10000</th>
<th>?1100</th>
<th>?????</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>0????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
</tr>
<tr>
<td>101</td>
<td>001?0</td>
<td>10?0?1</td>
<td>00000</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
</tr>
<tr>
<td>151</td>
<td>0????</td>
<td>?????</td>
<td>0110?</td>
<td>0000?</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
</tr>
<tr>
<td>201</td>
<td>01?00</td>
<td>1????</td>
<td>1????</td>
<td>1????</td>
<td>1????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
</tr>
<tr>
<td>251</td>
<td>1????</td>
<td>1????</td>
<td>1????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
</tr>
<tr>
<td>301</td>
<td>01000</td>
<td>0????</td>
<td>00110</td>
<td>0111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amphibamus grandiceps

<table>
<thead>
<tr>
<th></th>
<th>11000</th>
<th>0?11?</th>
<th>?1010</th>
<th>01000</th>
<th>01000</th>
<th>00010</th>
<th>01011</th>
<th>00000</th>
<th>21100</th>
<th>00010</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>0????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
<td>?????</td>
</tr>
<tr>
<td>101</td>
<td>10110</td>
<td>020?1</td>
<td>0000?</td>
<td>?0111</td>
<td>01110</td>
<td>11111</td>
<td>?0100</td>
<td>01100</td>
<td>0??00</td>
<td>00010</td>
</tr>
<tr>
<td>151</td>
<td>00011</td>
<td>101??</td>
<td>01011</td>
<td>00210</td>
<td>00210</td>
<td>10??</td>
<td>?????</td>
<td>000??</td>
<td>0???</td>
<td>?????</td>
</tr>
<tr>
<td>201</td>
<td>?0??0</td>
<td>?0??0</td>
<td>?????</td>
<td>11111</td>
<td>00000</td>
<td>11100</td>
<td>000??</td>
<td>11?01</td>
<td>1??1</td>
<td>1??1</td>
</tr>
<tr>
<td>251</td>
<td>11111</td>
<td>1?01?</td>
<td>0011?</td>
<td>?????</td>
<td>100??</td>
<td>?????</td>
<td>001?0</td>
<td>00000</td>
<td>01000</td>
<td>00000</td>
</tr>
<tr>
<td>301</td>
<td>00001</td>
<td>11111</td>
<td>00110</td>
<td>0111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anthracosaurus russelli

1 0??01 0011? ?1000 10000 00000 00?00 00011 00010 21100 00001
51 00000 00000 10000 10101 ?0100 00000 00100 00000 10100 10001
101 00110 02031 0000{12} 3100? 01100 00001 00000 0??00? 00000
151 00000 001?0 0001 01010 10200 00??? ?1100 00?10 01101 0?010
201 101?? 01010 10000 ??000 00000 0?0000 00000 0???? 0????
251 0???? 0???? 0???? 0???? 0???? 0???? 0???? 0????
301 0???? 0???? 0???? 0????

Apateon pedestris

1 10100 0011? ?1011 01000 01000 00010 01011 10000 21100 00010
51 00000 00000 00000 00101 ?0000 00100 00100 00011 10010 00010
101 00110 02030 0000{23} ????0 00000 00000 0???? 0?000 00000
151 00000 ???? 00001 00101 10200 00000 11100 00111 01101 00010
201 00101 01010 10111 01000 01000 11111 00000 11100 10101 20001
251 10111 12111 10111 01120 11012 11011 ?0000 00000 01110 00101
301 00011 11111 00110 0111

Archeria crassidisca

1 0??01 00110 ?1000 10000 00010 00100 00011 00010 10001 10000
51 00000 00000 00000 00100 ?0000 01000 00100 00011 10010 00010
101 00110 02030 0000{23} ????0 00000 00000 0???? 0?000 00000
151 00000 0??00 0001 00101 10200 00000 11100 00111 01101 00010
201 00101 01010 10111 01000 01000 11111 00000 11100 10101 20001
251 10111 12111 10111 01120 11012 11011 ?0000 00000 01110 00101
301 00001 11111 00110 0111

Asaphestera intermedia

1 0??01 0011? ?1000 10000 00000 00100 00011 00010 ?0100 21100 00000
51 10000 00101 ??1?? ?0??0 01000 00100 10000 00010 10000 10?10
101 00000 00111 00004 {01}???? 0????? 0??0? 0?000 0?000 0?001 00000
151 00000 0??? 0001 00101 10200 00000 11100 00111 01101 00010
201 00101 01010 10111 01000 01000 11111 00000 11100 10101 20001
251 10111 12111 10111 01120 11012 11011 ?0000 00000 01110 00101
301 00001 11111 00101 0111

Balanerpeton woodi

1 10100 0011? ?0100 00000 00000 00000 00011 00000 2110(01) (01)000
51 00000 00000 10000 10101 ?0000 00100 00100 00011 10000 00010
101 00110 02031 00004 40011 01100 00101 00000 10100 0?010 00000
151 00111 101?? 00000 00?10 00000 00100 00100 00011 10010 00000
201 10101 01010 101?? ?1000 10000 11100 00000 11100 10101 00010
251 10011 11101 00111 1?020 10012 01100 00000 00000 01000 00000
301 00001 11111 00110 0111

Baphetes kirkbyi

1 0??00 00111 01000 00010 00000 10000 00011 00000 2110? ?0000
51 00000 00000 10010 10011 ?0000 00000 00100 00100 00011 00000
101 00110 02030 00000 01000 01010 00000 01000 0?000 00000
151 001?? 000?0 00000 01000 01200 00010 1?000 000? 0?1?? 0????
201 0???? 0???? 0???? 0???? 0???? 0???? 0???? 0????
251 1001? ?0??? 0011? ?0??0 110?? 0???? 0???? 0???? 0????
301 000?? 0???? 0???? 0????
Early tetrapod relationships revisited

Batrachiderpeton reticulatum

1 0??0 00110 ?1001 00000 00000 01110 00110 00011 21111 00000
51 10001 10001 ??1?? ?0000 01100 00001 10100 01010 10000 00010
101 00000 020?0 00004 40100 ?1100 010?0 ?001? ??1?? ?0001 00000
151 00?? ?01?? 10001 00?00 00200 021?? ?1100 001?? 1??0 01010
201 01?? 1??0 10010 ??000 00001 11000 01?? ??1?? ??1?? 0???
251 0??? 0??? 0??? 0??? 0??? 0??? 0??? 0??? 0??? 0??? 0???
301 00001 11111 00110 0???

Batropetes fritschia

1 0??01 10111 00100 00001 00000 01100 00?12 10011 21110 ?1??
51 ???? ?0001 ?01?? ?0000 00100 00010 0?010 00010? 10000 001??
101 00220 020?1 00014 11000 00010 01000 00001 00000 ?0001 00000
151 00?? ?0001 00010 00000 00200 021?? ?1100 000?? 000?? 000??
201 ???? ???? ???? ?0100 00000 00100 00010 00010 00010 00010
251 11110 121?? 001?1 101(12)0 1001? 0101? 000?? 000(01)0 01111 01?10
301 00111 11111 11110 0111

Brachydictes elongatus / newberryi

1 0??00 00110 00000 00000 01001 00001 00000 01011 01000 00000 00000 00010
51 10000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
101 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
151 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00??
201 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00??
251 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
301 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000

Broiliellus brevis

1 0??? 071?? 01000 01000 01000 00000 07012 10000 21100 00000
51 ?0000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
101 00120 020?1 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
151 00011 101?? 0??? 00200 021?? 01100 011?? 1??0 01010
201 0??? 0??0 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00000 00000
251 11110 1100? 00111 00120 1???? 01?? 000?? 000?? 000?? 000?? 000?? 000?? 000??
301 00001 11111 11110 0111

Brukerpeton fiebigi

1 0???? 011?? 01000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
51 ????? 0??? 0?000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
101 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
151 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00??
201 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00?? 00??
251 10111 001?? 0??? 0??? 0??? 0??? 0??? 0??? 0??? 0??? 0??? 0??? 0???
301 00011 11111 001?? ?111

Caerorhachis bairdi

1 0???? 0??? 01000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
51 00000 00000 1??? 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
101 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
151 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
201 00010 01010 01010 01000 01000 00100 01010 01010 01010 01000 00100 00000 01111
251 00001 11111 11110 1??01 000?? 00000 01100 00000 00000 00000 00000 00000 00000
301 00001 11111 001?? ?111
Captorhinus aguti

Cardiocephalus sternbergi

Chenoprosopus lewisi

Cochleosaurus florensis

Colosteus scutellatus

Crassigyrinus scoticus
Endrerpeton acadianum

Diadectes absitus

Diceratosaurus brevirostris

Diplocaulus magnicornis

Diploceraspis burkei

Discosauriscus austriacus

Early tetrapod relationships revisited
Doleserpeton annectens

1 11000 0011? ?1010 01000 01000 00000 01011 10000 21100 00010
51 ?0000 00001 ?0000 00000 ?0100 00100 00101 00000 10000 10010
101 11110 020?1 00004 40111 01111 11010 1011? ???? ?0?010 11101
151 00011 101?? 01110 0?10 00?11 101?? ?1100 00?? 0??0? 1?101
201 ?0?? ?0??0 ?111?? 0000? 0???? ?0??0? 1??? ?11?? ?1??1
251 11111? ?0??0? 01?11 1?1?? ????? ????0 01?10? 00000 011(01)0 10000
301 00011 11111 00110 0??1

Dolichopareias disjectus

1 0??00 0?110 ?1101 10001 10000 010?0 00?10 001?1 210?1 10000
51 ?0000 10001 ??1?? 1??0? ?00?0 010?1 10?0? 1?0?? 1000? 0???10
101 00?00 000?0 00001 ????00 00000 00000 00010 00000 00100
151 ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ??????
201 ?????? ?????? ?????? 0000? 1100? ????? ?????? ?????? ?????? ??????
251 ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ??????
301 ?????? ?????? ?????? ?????? ?????? ?????? ?????? ??????

Ecolsonia cutlerensis

1 11000 0?111 11000 00001 01000 00000 00012 10000 21101 00010
51 10000 00001 ??000 10000 10000 00100 00101 00000 10000 00011
101 00120 01011 00004 ?0011 ?1100 0010? 10000 01?00 0?010 00100
151 00111 10?00 01011 00000 00010 00101 01010 101?? ?1??00 01001 01010
201 10101 01010 101?? ?1000 00000 1110? 10010 11111 11101 21101
251 1?1?? ?0?01 00111 01111 00001 00000 00012 10000 00000 00000 00000
301 00001 11111 00??? ?0??1

Edops craigi

1 0??10 00111 01000 00000 00010 00000 00011 00000 21100 00000
51 10000 00000 10000 00100 00100 00010 00010 00010 00010 00010 00010
101 00100 00010 00004 40010 01100 00101 00000 10100 0?011 00000
151 00000 00170 00001 00010 00200 001?? 11000 001?? 01101 00000
201 ?0101 01010 101?? 01000 00000 00000 00000 00000 00000 00000 00000
251 1001? ?????? ?????? ?????? ?????? ?????? 00??? 01000 00000
301 ?????? 1????? ?0??0? ?????

Eoecaecilia micropoda

1 11101 00111 01000 00000 00000 00010 01010 000?? 20110 00000
51 ?0000 00001 ??1?? ?0000 00000 00001 00001 00000 00000 00000 00000 00000
101 00000 1?01? 00004 40101 11110 01010 001?? 00010 00101 10010
151 00011 001?? 01011 00?00 0200 121?? ?1100 000?? 1??1? ?1???
201 ?1?? 1??01 00000 00000 00000 00000 00000 00000 00000 00000 00000
251 11111 1(12)? ?0?01 00110 1???1 ?0??10 00000 01110 0?000 00001 00000
301 00001 11111 0?01? ?111

Pholiderpeton (= Eogyrinus) attheyi

1 0??01 0011? ?1000 00000 00010 00000 00001 00010 21100 00000
51 ?0000 00000 10000 00101 00000 00010 00100 00100 00100 00100 00100 00100
101 00110 020?0 00002 3?100 01100 00000 00000 00000 00000 00000 00000 00000
151 00000 001?? ????? ?0?01 10200 00??? ?1100 00011 01101 00000
201 10101 01010 10100 01000 01000 0???? ?0??0? ????? ????? ????? ?????
251 ?????? ?????? ?????? 0?11? ?????? ?0??? ?0??? 00000 01110 00010
301 00001 111?? ?0??? ?0???
Early tetrapod relationships revisited

Eoherpeton watsoni

1 0??01 00110 ?1000 00000 00010 00100 00011 00010 21100 00000
51 ?0000 00000 0?000 00101 ?0000 00?00 00?00 00000 10010 00?10
101 0020? 02030 00004 41?? ?????. ?000? 00000 ?0000 0?0?0? 0?000
151 00 0?0?1 ?????? ?1?1?1 10200 ?????? ?1?00 00111 01101 00000
201 00101 01010 101?0 ?1000 00000 ?1??? ??010 1?100 10101 10001
251 1011? ????11 1011? ??1?0 110?? ?????1 0000? 00000 01100 00000
301 00001 111?? 0 ?????? ????1

Eoscopus lockardi

1 11100 0011? 0?100 01000 01000 00010 00012 10000 21100 10010
51 ?0000 00001 ??000 10000 00100 00101 00000 00010 10000 00110
101 01110 020?1 00004 ??011 10010 10?11 00000 ?1100 00?10 00101
151 00011 101?0 ????? ??1?1? ?1??? 00??? 01101 01???
201 ??0?0 0?0?? ?0??0 00000 00100 000?1 ??1?0 00001 ?11? 01?1?
251 ??1?1 12101 0011? 101?0 10012 01100 00100 00000 010(01)0 00000
301 00001 11111 00110 0111

Eryops megacephalus

1 11100 00110 11100 00000 00010 00100 00011 00000 21100 00100
51 10000 00001 ??000 10000 00100 00101 00000 00010 10000 00110
101 01010 01011 00104 40011 01100 01001 00000 10100 0?100 00100
151 00011 001?0 01001 00010 00200 001?? 01000 00001 01101 00010
201 10101 01010 10111 11000 00000 1110? 00000 11111 11111 21100
251 10011 12101 101?1 01120 11012 01100 000(01)0 00000 01000 00000
301 00001 11111 00110 0111

Eucriotta melanolimnetes

1 0??00 0?11? ?1000 00000 00000 00000 00012 00000 21100 000?0
51 ?0000 00000 10010 100?1 ?0000 00100 00000 00??0 10000 00?10
101 00111 000?0 0000? ??010 0110? 01010 00000 ?0000 00010 00000
151 001?0 ?????? ?????? ??010 10200 00??? 00??? 00??? ?????? ?????
201 ?????? ?????? ?????? 00000 00000 ?11(01)(01) 0000? 01?0? 0?010 0?001
251 1001? 1111? 0?11? ????20 1??1? ???00 0000? ?????? ?????? ?????
301 ?????? ????1 ?1?? ????1

Euryodus primus

1 0??01 10111 10000 00000 00000 00000 00010 00100 21100 00000
51 10100 0011? ??1?? ??000 00010 00010 01?00 00010 10000 11010
101 00000 020?1 00004 (01)010? 01100 01100 00001 11100 0?01? 00000
151 11100 0?1?? 00101 00000 00200 02?? ?1100 001?? 1??01 01011
201 0????? ?????? ???00 00010 ?1??? 1??01 1?101 11101 21101
251 11111 ??1?1 0??11 10210 1001{12} ?????? ?0??1 00??? 01110 10000
301 00111 1???? 011?? ????1

Eusthenopteron foordi

1 0??00 00000 ?0??0 00000 00000 00000 00000 00000 00000 00000
51 ?0000 00000 00000 00000 00000 00000 00000 00000 00000 00000
101 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
151 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
201 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
251 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
301 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000

Early tetrapod relationships revisited

337
|--|--------|
Early tetrapod relationships revisited

Isodectes obtusus

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>10000 00111 01001 00000 00000 00000 00010 00000 21000 100(01)0</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td></td>
<td>10000 00000 10000 00000 00000 00100 01000 00111 10000 00010</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>00100 01070 00001 10001 01110 00?1? 1000? ??0?0 ?0?000 0?000</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>00111 00110 00010 00110 02000 12???? ??000 00??0 0?10 ?1010</td>
</tr>
<tr>
<td>201</td>
<td></td>
<td>????? ??0?? 10111 ?1000 1000? ????? 00??0 ????? ????? ??0??</td>
</tr>
<tr>
<td>251</td>
<td></td>
<td>?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????</td>
</tr>
<tr>
<td>301</td>
<td></td>
<td>?????? ?????? ?????? ?????</td>
</tr>
</tbody>
</table>

Karaurus sharovi

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>11100 0011? ?1010 01001 110?0 00?11 01012 100?? (12)1110 ?1???</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td></td>
<td>????? ?1??1 ???1? ?1??? ??1?1 ????? ??000 001?? ?????0 11?10</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>11110 1?01? 00004 ?0101 ?1111 1???? ??1?? ?????? 0?100 0?110</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>00011 101?0 01110 00200 00110 12???? ??1?? 000?? 1?001 ??1??</td>
</tr>
<tr>
<td>251</td>
<td></td>
<td>????? 1110? 0?01? ?????? 1???? ????? 0011?? 00000 0???0 11??0</td>
</tr>
<tr>
<td>301</td>
<td></td>
<td>00001 11111 0110 01?1</td>
</tr>
</tbody>
</table>

Keraterpeton galvani

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0???? ?0110 ?1001 00001 00000 01100 00?10 00111 21111 10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td></td>
<td>?0000 10001 ??1?? ??0?0 01000 00000 10100 0101? 10000 00?10</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>00200 020?0 00004 4???? ????? ????? 0???? ?????? 0?000 0?000</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>00?00 0???0 ?????? ?????? ?????? ??000 0???0 ?????? ?010</td>
</tr>
<tr>
<td>201</td>
<td></td>
<td>?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????</td>
</tr>
<tr>
<td>251</td>
<td></td>
<td>10010 0110? 001?? ?????2 1???? ????? 0001?? 00000 0???0 11??0</td>
</tr>
<tr>
<td>301</td>
<td></td>
<td>10001 11111 01?? ?111</td>
</tr>
</tbody>
</table>

Kotlassia prima

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0??01 0011? ?1000 00000 00000 01000 00010 00010 1101 10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td></td>
<td>10000 00000 11000 10001 ?0100 01000 00101 000?0 10000 00010</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>00200 01011 00004 41100 01100 01000 00001 00000 10100 00000</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>00000 001?0 00001 00000 10200 011?? ?1100 00110 01101 00010</td>
</tr>
<tr>
<td>201</td>
<td></td>
<td>00101 01010 10111 11000 00000 11011 10000 11?11 ?1101 21?01</td>
</tr>
<tr>
<td>251</td>
<td></td>
<td>10011 ?1111 ?01?1 11120 1001? 0?101 000?0 00000 01111 10000</td>
</tr>
<tr>
<td>301</td>
<td></td>
<td>00011 11111 011? ?111</td>
</tr>
</tbody>
</table>

Leptorophus tener

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1?100 0011? ?1011 01000 01000 00010 01011 10000 21101 ?00??</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td></td>
<td>?0000 00011 ??000 107??1 ?0000 00100 00101 00000 10000 00?10</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>11110 020?1 00004 40101 01110 01010 ?1101 01010 00??0 00111</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>00011 101?? ????? ?1??10 00?20 01??0 ?1??? 00010 01101 01010</td>
</tr>
<tr>
<td>201</td>
<td></td>
<td>10101 01010 10111 11011 0000? 00??0 00??0 0????0 0????0 0????0</td>
</tr>
<tr>
<td>251</td>
<td></td>
<td>?????? 110?? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????</td>
</tr>
<tr>
<td>301</td>
<td></td>
<td>0001? 1???? ?01?? ???1</td>
</tr>
</tbody>
</table>

Lethiscus stocki

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0??00 ?0111? ?1101 00000 00000 00010 00?1? 0011? 0?0?? 21001 10?00</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td></td>
<td>?0000 1000? ??001 000?? ?00?0 00001 10000 0???? ?0000 0???10</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>00111 02??0 10014 ????? 0???? 0???? 0???? 0???? 0???? 0????</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>?????? ?????? ?????? ?????? 0????? 0???? 0???? 0???? 0????</td>
</tr>
<tr>
<td>201</td>
<td></td>
<td>?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????</td>
</tr>
<tr>
<td>251</td>
<td></td>
<td>?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????? ?????</td>
</tr>
<tr>
<td>301</td>
<td></td>
<td>00001 11111 000?? ?11?</td>
</tr>
</tbody>
</table>
Limnoscelis paludis

0??01	01011	11000	00000	00000	00100	00011	00111	21101	001?0	
51	01000	00001	?0000	00001	?0100	00100	00101	0001?	10000	00110
101	00000	02021	00004	411?	0110	01?0?	00001	0?000	1101?	00000
151	00000	01000	01001	00200	01???	?1000	00???	1??01	01010	
201	0????	01010	10???	?1000	00000	11???	00110	21101		
251	10011	12111	10110	?1010	1101?	????1	00001	00000	01111	10000
301	00011	11111	01010	0111						

Megalocephalus pachycephalus

0??00	00111	01000	10010	00000	00000	00011	00000	21100	00000	
51	00000	00001	??010	1001?	?0000	00000	00100	0001?	00100	00010
101	01120	00010	00003	30010	01100	00101	00000	10100	0?01	00000
151	001??	?0000	00001	01000	01200	00100	11000	01110	01101	00010
201	00111	01110	11100	?1000	00000	????	????	????	????	????
251	????	????	????	????	????	????	????	????	????	????
301	????	????	????	????						

Micraroter erythrogeios

0??01	01011	01000	0000?	0000(01)	001?0	00012	00010	21100	00000		
51	10110	00111	??1??	?0000	10110	00010	00?00	000??	10000	11010	
101	00000	1?011	01004	?1(01)	10	01100	01100	00001	11000	0?01	0000
151	01000	001?1	00101	00000	01200	02???	?1100	001??	01101	01010	
201	0????	????	????	????	????	????	????	????	????	????	
251	????	????	????	????	????	????	????	????	????		
301	????	????	????	????							

Microbrachis pelikani

0??01	10000	00000	00100	00100	00010	00111	21101	001?0		
51	00000	00001	??1??	?0000	00100	000?0	01100	00100	10000	00100
101	00200	020?1	0000(23)	31110	01100	01101	00001	11100	0?01	00000
151	10000	001??	00101	00010	00200	011??	?1000	00011	01101	01010
201	0????	????	????	????	????	????	????	????	????	????
251	????	????	????	????	????	????	????	????	????	
301	????	????	????	????						

Micromelerpeton credneri

11100	00111	11000	01000	01010	00000	00010	100(01)0	21100	00010		
51	?0000	00001	??000	100?1	?0000	00010	00101	00000	10000	00?10	
101	01110	020?1	00001	{23}	0001	01110	00010	10101	01000	0?00	00011
151	00011	10000	????	????	?1000	00010	01101	01010			
201	10????	01010	10110	11000	00000	01111	101??	????1	01??	?0101	
251	11110	11011	00111	00120	1001?	????1	00001	00000	01110	001?0	
301	00011	11111	11100	1111							

Neldasaurus wrightae

<p>| 0??0 | 00111 | 10000 | 00000 | 00000 | 00012 | 00000 | 21000 | 00000 |
| 51 | 10000 | 00000 | 10000 | 10000 | 10000 | 00100 | 00101 | 00100 | 100?0 | 00?10 |
| 101 | 00100 | 02010 | 0000(23) | ?00?1 | 11100 | 00?00 | 00000 | ??000 | 0?010 | 00000 |
| 151 | 00011 | 00010 | 00001 | 00010 | 00200 | 00??? | ?1000 | 00000 | 01101 | 00010 |
| 201 | 0???? | ???? | ???? | ???? | ???? | ???? | ???? | ???? | ???? | ???? |
| 251 | ???? | 11000 | ?01?? | ????2 | 1???? | ????0 | 001?? | 00??? | 01000 | 00000 |
| 301 | ???? | 00011 | 11111 | 01100 | 0111 |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Code 1</th>
<th>Code 2</th>
<th>Code 3</th>
<th>Code 4</th>
<th>Code 5</th>
<th>Code 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odontaperpeton triangulare</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Oestocephalus amphiuminum</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Paleothyris acadiana</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Panderichthys rhombolepis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pantylus cordatus</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pelodosotis elongatum</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Petrolacosaurus kansensis

1 0??01 00111 ?1000 00000 00000 00100 00011 10011 21110 00010
51 01000 00111 ?0000 00000 ?0100 00000 00100 00011 10000 00010
101 00110 02021 00004 41110 01100 01101 01001 01110 11001 00000
151 00000 011?1 00011 10101 10200 011?? ??110 01011 01010
201 01??1 1??00 11111 01000 00000 11111 10010 11111 10101 21111
251 11111 12101 00111 00120 10012 11101 00001 00000 0111(01) 10000
301 00011 11111 00101 01?1

Phlegethontia linearis

1 0??00 00110 ?1100 00000 ?01?? ??110 00?00 00?11 21111 21111
51 0????? 00111 00000 10000 00001 011?? 001?? 10??0 001?? 10???
101 00110 02000 10014 4???? ????? ????? 0???? ????? ????? ?????
151 0????1 0???? 00001 01001 10100 10100 10100 01100 11100 01100
201 01101 01010 10111 01000 01000 01000 01000 01000 01000 01000
251 11111 12111 11111 11111 11111 11111 11111 11111 11111 11111
301 00001 11111 000?? 01??1

Pholiderpeton scutigerum

1 0??01 00110 ?1000 00?00 ?0010 0010? 00011 00?10 00000 00000
51 00100 00000 00001 00001 00001 00001 00001 00001 00001 00001
101 00110 00?30 00003 31000 01100 00000 0?000 00000 0???0 00000
151 00000 010?1 00001 01011 10000 11000 11000 11000 11000 11000
201 00101 01010 10111 01000 01000 01000 01000 01000 01000 01000
251 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111
301 00001 11111 000?? 01??1

Phonerpeton pricei

1 11000 00???? ?1000 00001 01000 01000 00011 10000 21100 00010
51 10000 00100 00000 00000 00101 00000 00101 00000 00101 00000
101 01110 02011 00004 40011 01100 01100 0010? (01)000? 10?00 0?010 00000
151 00011 01100 01011 00010 00200 0?1?? ?1000 00011 01101 01010
201 10101 01010 10111 11000 00000 11??? 01???? 1?111 1?101 21101
251 1???? 0???? 0???? ????? ????? 00000 00000 00000 00000 00000 00000
301 00001 11111 00??1 01??1

Platyrhinops lyelli

1 11100 0011? 01010 01000 01000 00010 00012 00000 20100 00010
51 0????? 00001 00001 00001 00001 00001 00001 00001 00001 00001
101 0?000 02011 00004 40011 01110 10?11 00000 0?1000 0?010 01100
151 00111 1?1?0 ????? ????10 00200 101?? 01100 01101 01011
201 01???? ?1???? 11000 00000 11??? 01???? 1?111 1?101 21101
251 11111 121?? ?????? 0012? ????? ?????0 001?? 00000 01000 00000
301 00001 11111 00??? 01??1

Proterogyrinus scheelei

1 0??01 00110 ?1000 10000 000?0 00000 00011 00100 21110 00010
51 00000 00000 00000 00101 00000 01100 01010 01000 100?0 00101
101 01101 02030 00000{12} 41???? 0???0 00000 00000 00000 00000
151 00000 0???? 00001 0101 02000 00000 01100 01101 01010
201 0???? 01010 1010? ?1000 01000 11100 00000 11100 10101 20101
251 10011 11111 10111 01120 11102 11101 00000 00000 01100 00000
301 00001 11111 00101 0111
Early tetrapod relationships revisited

Pytonius marshii

1 01000 00110 00000 00000 00000 00000 00000 00000 21001 10001 01010
51 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
101 00100 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
151 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
201 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
251 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
301 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000

Sauropleura pectinata/scalaris

1 01000 00110 00000 00000 00000 00000 00000 00000 21001 01010
51 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
101 00100 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
151 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
201 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
251 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
301 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000

Saxonerpeton geinitzi

1 01000 00110 00000 00000 00000 00000 00000 00000 21001 10010
51 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
101 00100 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
151 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
201 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
251 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
301 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000

Schoenfelderpeton prescheri

1 01000 00110 00000 00000 00000 00000 00000 00000 21001 10010
51 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
101 00100 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
151 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
201 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
251 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
301 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000

Scincosaurus crassus

1 01000 00110 00000 00000 00000 00000 00000 00000 21001 01010
51 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
101 00100 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
151 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
201 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
251 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
301 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000

Seymouria baylorensis/sanjuanensis

1 01000 00110 00000 00000 00000 00000 00000 00000 21001 00000
51 10000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
101 00200 02011 00000 00000 00000 00000 00000 00000 00000 00000 00000
151 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
201 00101 01010 00100 00100 00100 00100 00100 00100 00100 00100 00100
251 00100 10100 00100 00100 00100 00100 00100 00100 00100 00100 00100
301 00011 01111 001?? 0111

Solenodonsaurus janenschi

1 1???? ???1? ?1000 ??000 00000 00100 00?11 00111 21101 100??
51 ?0000 00001 ??000 10??2 ?0000 00100 00100 0?017 10000 00?1?
101 0?100 020?1 00004 ???? ????? ????? ????? ?0000 00100 01?10 00001 00?1?
151 1???? ????? ????? ????? ????? ?0000 00100 00100 0?010 00000 00100 10101 120??
201 1???? ????? ????? ?0000 0000 11?11 100?? 00111 ?0101 21011 1211?
251 1???? 12111? ?0111 10110 ????? ????? ????? ?0000 01110 001?0
301 00011 1???? 111?? ?1?1

Stegotretus agyrus

1 0??01 10111 01000 00000 00000 00000 10012 00010 21100 00000
51 10100 00101 ??1?? ?0000 ?0010 00010 01?00 00010 11000 00010
101 00000 010?1 00004 ?1100 01100 00001 001?1 ????? 0?001 ?0000
151 00000 001?1 00101 00000 00200 02??? ????? 00?1? ????? ?1?00
201 1???? ????? ????? ?1000 0001? ???1? 1000? 11??? 01??? ?1???
251 1???? 12111? ?0111 10110 ????? ????? ????? ?0000 01110 001?0
301 00011 1???? 111?? ?1?1

Acheloma cumminsi (= Trematops milleri)

1 11000 0011? ?1000 00001 01000 01000 00011 10000 21100 00010
51 10000 00001 ??000 00001 00000 00101 00000 10000 00111
101 01110 02011 000?0 ?????? ?1100 01210 00001 00010 00000 00100
151 00011 00000 01011 00010 00200 00??? ?1100 000?? 00?00 ?0010
201 1???? ????? ????? ?1000 0001? ???1? 1000? 11??? 1??1? ?1??
251 0011? ?1??1 00111 001?0 1??12 01?0 000?? 00000 01000 00000
301 00001 1???? 01??1 ?????

Triadobatrachus massinoti

51 1???? ?1??1? ?11??2 ?1?1?1 ????? ????? ????? ?0??1 00001 00000
101 1???? 11??1? ????? ????? ?111? 11000 11??? 00000 00100 01010
151 00111 11110 00000 02100 10??? ????? 10??1 1??1? ?1??
251 11111 11100 ?1110 ?0?20 1001(12) 0??00 0011? 00000 0??0 10??0
301 00001 11111 001?? ?111

Trimerorhachis insignis

1 10000 00111 ?1000 00000 00000 00000 00100 01000 00010 00100 21000 00000
51 10000 00000 00000 00000 00000 00000 10000 00000 00000 00100 00000 00100
101 00110 00010 000(23) ?0001 11100 00000 00001 00000 0?000 00000
151 00011 00010 00000 00010 00200 01??2 ?1000 00011 01101 00100
201 101?? 01000 10010 01000 0000? ?010 01100 ?1??0 ?1??0 ?1101
251 10111 11101 001?? ?010 100?? ?0??1 00000 010?0 00000
301 00001 0????? 00110 0111

Tuditanus punctulatus

1 1???? ??11? ?1000 0000? 00001 001?0 00?11 00110 21100 00??0
51 ?0??2 001?1 ??1?? ?0?0?0 00100 00100 00010 10000 00?10
101 0?200 0?010 0000? ????? ????? ????? 0?000 0?000 0?000
151 00000 0???0 00100 00?00 00200 00??? ????? 00?0 00??? ?1010
201 1???? ????? ????? ?0000 00000 11111 10??? ????? ?01?? ?1001
251 11111 1(12)?11 00111 001?0 1001(12) (01)1?11 000?? 00??? 0????0 10??0
301 1????? 11??2 01110 0111
Early tetrapod relationships revisited

Tulerpeton curtum
1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
51 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
151 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
201 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
251 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
301 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Urocordylus wandesfordii
1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
51 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
151 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
201 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
251 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
301 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Valdotriton gracilis
1 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010
51 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
151 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
201 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
251 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
301 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Ventastega curonica
1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
51 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
151 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
201 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
251 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
301 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Westlothiana lizziae
1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
51 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
151 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
201 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
251 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
301 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000