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It has been claimed that hundreds of researchers use nested clade phylogeographic analysis (NCPA) based on what the method

promises rather than requiring objective validation of the method. The supposed failure of NCPA is based upon the argument that

validating it by using positive controls ignored type I error, and that computer simulations have shown a high type I error. The first

argument is factually incorrect: the previously published validation analysis fully accounted for both type I and type II errors. The

simulations that indicate a 75% type I error rate have serious flaws and only evaluate outdated versions of NCPA. These outdated

type I error rates fall precipitously when the 2003 version of single-locus NCPA is used or when the 2002 multilocus version of

NCPA is used. It is shown that the tree-wise type I errors in single-locus NCPA can be corrected to the desired nominal level by a

simple statistical procedure, and that multilocus NCPA reconstructs a simulated scenario used to discredit NCPA with 100% accuracy.

Hence, NCPA is a not a failed method at all, but rather has been validated both by actual data and by simulated data in a manner

that satisfies the published criteria given by its critics. The critics have come to different conclusions because they have focused

on the pre-2002 versions of NCPA and have failed to take into account the extensive developments in NCPA since 2002. Hence,

researchers can choose to use NCPA based upon objective critical validation that shows that NCPA delivers what it promises.

KEY WORDS: Computer simulation, nested-clade analysis, phylogeography, statistics.

Knowles (2008) asks the question “Why does a method that fails

continue to be used?” The method in this case is nested clade

phylogeographic analysis (NCPA), and she is particularly con-

cerned about the many authors and coauthors who have used this

method even though they cite a paper that she feels shows that the

method is a failure (Knowles and Maddison 2002). She answers

this question with another question, asking the entire phylogeog-

raphy community “how long will a field cling to an ideal rather

than requiring objective critical validation,” There is another an-

swer to her question that does not denigrate the objectivity of

hundreds of scientists; namely, that the method does not fail. To

see how this alternative answer arises, I must first examine her

arguments that NCPA is a failed method.

Accurate and Extensively Validated?
The inferences obtained by NCPA have been extensively vali-

dated by applying the method to 150 cases of positive controls;

that is, cases in which prior information exists about actual his-

torical events that occurred (Templeton 1998, 2004). This method

validates NCPA in the most relevant way: how it behaves with

real data and actual historical events. Knowles severely criticizes

this method of validation as follows (Knowles 2008, p. 2714):

What was not included in this tabulation/validation procedure
was how many times processes other than those that were ex-
pected were also inferred, which is the most salient result of the
simulation studies—NCPA repeatedly infers processes when
no such events have occurred (Knowles and Maddison 2002;
Panchal and Beaumont 2007). The argument that NCPA has
been extensively tested and shown to be accurate (Templeton
2004, 2008) is based on blatantly confusing type I and type
II errors (Sokal and Rohlf 1995). The simulation studies both
clearly show that NCPA incorrectly identifies significant ge-
ographic associations at a disturbingly high rate, which leads
to inferences about process that never occurred. This finding
cannot be rebuffed by the argument that NCPA has a high
rate of detecting an expected fragmentation or range expan-
sion (i.e., a high rate of true positives) and a low rate of failing
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to detect an expected fragmentation or range expansion (i.e., a
low rate of false negatives)(see Templeton 2004). This logic is
fundamentally flawed.

I agree completely with Knowles that a legitimate validation anal-

ysis must deal with the inferences with no prior expectations and

must estimate both type I and type II errors. My sole disagree-

ment is with the characterization of what I did in my validation

analysis. Here is what I really did (Templeton 2004, p. 792):

Appendix 1 presents all the inferences from NCPA with respect
to historical events, both fragmentation and range expansion,
whether or not they were predicted a priori. For example,
Appendix 1 shows that the NCPA of the fish Galaxias trut-
taceus inferred two range expansion events, one predicted by
outside evidence (their current range includes lakes created by
melting Pleistocene glaciers) and one that did not (an unpre-
dicted range expansion to the north coast of Tasmania). All
events inferred by NCPA that were not predicted by outside in-
formation are regarded as false positives. No inferred historical
events of any sort are excluded from this analysis.

The “false positives” in the above quotation are the type I er-

rors. The procedure used in Templeton (2004) provides an up-

per bound to the type I error rate because some of the unex-

pected inferences may actually be true. As to “blatantly confus-

ing type I and type II errors”, there are eight tables in Templeton

(2004); table 8 of Templeton (2004) refers to the simulation re-

sults of Knowles and Maddison (2002) and the other seven tables

give various results from the validation analysis. Six of these

seven tables tabulate the following four categories: true positives,

false negatives, false positives, and true negatives. Hence, this

analysis deals extensively, exhaustively, and explicitly with both

type I (false positive) and type II (false negative) errors. Iron-

ically, on page 2715, Knowles quotes my type I error rate of

23%, which comes from table 5 in Templeton (2004)—the very

same paper that Knowles on page 2714 claimed had no such

tabulation.

When this misunderstanding of how I actually performed

the validation analysis is corrected, it becomes apparent that the

validation analysis was performed in an appropriate fashion ac-

cording to the criteria given in Knowles (2008). There is no other

method of phylogeographic inference that has been subjected to

such a thorough analysis of both type I and type II errors, so I

stand by my claim that NCPA is accurate and extensively vali-

dated, now knowing that this claim is fully consistent with the

criteria articulated so well by Knowles (2008).

This validation analysis also corrects another factual error

in Knowles (2008). One of the great strengths of NCPA is that

it can generate complex phylogeographic histories from multi-

ple simple inferences, with each inference treated as a testable

null hypothesis and with quantified statistical support (Temple-

ton 2009). Knowles (2008, p. 2717) states “There is not a single

analysis, simulation or otherwise, that has shown that NCPA can

accomplish what it is purported to do—infer multiple historical

processes that may characterize a species’ history.” This is not

true. I tested the null hypothesis that multiple historical events in

a species’ history do not interfere with one another in the NCPA

statistical inference structure (Tables 6 and 7 in Templeton, 2004)

and found that there was indeed no detectable interference, which

falsifies Knowles’ claim.

Erroneous Error Rates of 75%?
The second part of Knowles’s argument that NCPA is a failed

method is that the type I error rates are 75% or more, accord-

ing to computer simulations (Knowles and Maddison 2002; Pan-

chal and Beaumont 2007). First consider Panchal and Beaumont

(2007). This study confounds three sources of false positive er-

rors. The first source of error arises from unrealistic simulations.

The simulation program that they used, SIMCOAL, only allows

the use of unrealistic mutational models (Templeton 2009). Simu-

lations with unrealistic mutational models are known to generate

false positive phylogeographic inferences (Palsbøll et al. 2004),

so there is no justification for ignoring this potential source of

error. Moreover, in half of their simulations they assumed ex-

haustive sampling of every local deme in their species, and in

the other half they assumed 50% coverage of all local demes. Of

all the hundreds of datasets that I am familiar with, both from

my own laboratory and from other laboratories, no one has every

claimed 100% deme sampling, or even 50%. These are exceed-

ingly unrealistic assumptions. These assumptions eliminate or

minimize geographical sampling as a source of error, thereby cre-

ating artificial power. Eliminating geographical sampling error by

assumption induces artificial type I error rates between 55% and

60% (Templeton 2004), and Panchal and Beaumont (2007) them-

selves showed a highly significant effect on type I error rates due

to the two sampling proportions that they used. Hence, there is

no doubt that the 75% figure is inflated by these unrealistic sam-

pling assumptions. Second, Panchal and Beaumont (2007) do not

use the inference key that has been legitimately validated by the

criteria given in Knowles (2008); rather, they use their own unval-

idated inference algorithm. I know from personal experience that

the inferences emerging from their algorithm can be discrepant

with inferences drawn from the validated inference key, and I

know from direct communication that other users of NCPA have

also encountered discrepancies. Hence, there is no justification

for ignoring an unvalidated inference algorithm as a source of

additional error. Finally, the errors could be due to NCPA itself,

which are certainly much higher than the nominal rate of 5%, as

shown in Templeton (1998, 2004). The design used by Panchal

and Beaumont (2007) confounds these three sources of error, and

it is logically impossible to attribute all of the errors to NCPA

alone.
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Panchal and Beaumont (2007) also claimed that their sim-

ulation results mimicked and could explain the frequency and

pattern of inferences observed in the NCPA of real datasets; in-

deed, they devote an entire section of their paper to this claim.

However, they did not actually test their claim as a null hypoth-

esis. I (Templeton 2008) first tested the null hypothesis that their

frequency of type I errors was homogeneous with that observed in

the datasets used in the validation analysis (Templeton 2004), and

I strongly rejected their claim (probability ≤ 0.0035). Knowles

(2008) dismisses this by saying that it shows only a difference

in error rates, which indeed is all this test was intended to show.

However, the principle argument made by Knowles against NCPA

is based on a difference in error rates, and this test result falsifies

her claims about error rates. Moreover, I (Templeton 2008) pre-

sented the results of two other statistical tests of the claim made

by Panchal and Beaumont (2007) that the false positives in their

simulations can explain the inferences observed in real datasets

with NCPA. These two additional statistics test null hypotheses

related to the expected spatial/temporal patterns of type I errors

irrespective of the frequency of type I errors. These two pattern

tests also strongly falsified the claim of Panchal and Beaumont

(2007). Beaumont and Panchal (2008) reacted to this triple falsifi-

cation by rejecting the premise of the entire section of Panchal and

Beaumont (2007) that compared their simulated results to actual

results, now arguing that actual data and simulated data are so

different that no valid comparison can be made. I fully accept this

new position of Beaumont and Panchal (2008) because it is exactly

the same conclusion that I drew from the three statistical tests of

the claim in Panchal and Beaumont (2007). Hence, all agree now

that the 75% figure does not reflect the behavior of NCPA with

real data.

The second set of simulations referred to by Knowles (2008)

is that given in Knowles and Maddison (2002), which reported a

type I error rate of 75–80%. I have already examined this claim

in detail (Templeton 2004), so I will give only a brief summary

here. First, it is based upon only 10 simulation runs, a number

that is inadequate to estimate error rates with statistical credibility.

Second, they simulated a situation in which every local population

was fragmented from all other local populations, and this case was

specifically excluded from the inference key for NCPA (p. 773,

Templeton et al. 1995), a fact not mentioned in Knowles and

Maddison (2002) nor by Knowles (2008). Third, Knowles and

Table 1. The type and number of inferences obtained from the simulation output files of Knowles and Maddison with the 2003 inference

key under the original sampling assumptions of Knowles and Maddison (2002).

Inference Inconclusive Inadequate Fragmentation Restricted Range
genetic resolution gene flow expansion

Number 1 2 18 5 2

Maddison (2002) assumed that they sampled just 40 individuals

from a total population of 40,000, but that this sparse sampling

represented an exhaustive sampling of every local population in

the species. As mentioned above, exhaustive deme sampling is

unrealistic in that it does not correspond to the sampling situation

of a single real dataset. When one assumes the more realistic case

that there were local populations that were not sampled, the type

I error rate drops to 18%, a result consistent with the 23% error

rate (Templeton 2004). Knowles (2008) counters these results by

claiming that I “assumed a new evolutionary history that differed

from the one used to simulate the data” (p. 2716, Knowles 2008).

This is not true. I used the output files from their simulations, and

I did not change in any way the simulations themselves—only

the sampling assumption that had no impact whatsoever upon the

actual simulations.

An additional flaw in Knowles and Maddision (2002) is that

it is out-of-date. The original NCPA inference key was published

in 1995, the first major changes were made in 1998, and the

next set of major changes was made in 2003. Minor changes are

constantly made and updated at the GEODIS (the program that

implements NCPA) website. One major difference between the

1998 key and its minor updates versus the 2003 key and its minor

updates was that many more ways of inferring fragmentation were

incorporated into the 2003 key, due mostly to user suggestions.

As a result, the 2003 key and thereafter could deal more effec-

tively with the type of microfragmentation that was specifically

excluded from the key used by Knowles and Maddison (2002).

The 2002 analysis by Knowles and Maddison is therefore irrel-

evant to Knowles’ (2008) criticism of current usage of NCPA.

Table 1 presents an updated analysis of the simulation results

of Knowles and Maddison (2002) using the 2003 inference key

(the same results are obtained with the current key) with nothing

else altered from the original analysis, including the sampling

assumptions of Knowles and Maddison (2002). Hence, there is

no possibility of this analysis being subject to the criticism that it

alters the scenario simulated by Knowles and Maddison (2002);

rather, it merely makes their simulations relevant to the version

of NCPA that has existed for over the past 5 years. The results

of using the 2003 key are shown in Table 1. The two range ex-

pansions in Table 1 are clearly type I errors, and the 18 inferred

fragmentation events are clearly true positives. The inferences

of restricted gene flow require a more detailed examination. In
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their simulations, Knowles and Maddision (2002) start with a sin-

gle ancestral population, which then splits into two, with each

isolate subsequently splitting again at a later time (see fig. 2 in

Knowles 2008). During the time between these two splits, there is

the opportunity for gene flow, but it is restricted to being between

populations 1 and 2 and between populations 3 and 4. All five

of the inferences of restricted gene flow are consistent with these

geographical constraints, but four of them are also consistent with

patterns of gene flow that violate these constraints. Hence, these

four will be counted as type I errors. Type I errors therefore oc-

curred in 21% of the significant results in the post-2002 version

of single-locus NCPA: a figure substantially lower than that given

in Knowles and Maddison (2002).

The 75% figure has no logical validity as it stems solely from

the results of Panchal and Beaumont (2007) that confound three

sources of error and is significantly inconsistent with real data

in both frequency and pattern. The 75% figure is not supported

by the simulations of Knowles and Maddision (2002) for any

version of the NCPA inference key used since 2003. Hence, the

only credible type I error rate for single-locus NCPA as used today

is around 23%, as shown by both simulated and real data.

The 23% Solution
Knowles (2008) argues that even the 23% type I error rate is still

too high to inspire confidence in NCPA. I agree with her com-

pletely. Indeed, I noticed that the type I error rates were much

higher than the nominal 5% rate when I did the initial validation

analysis on a smaller number of real datasets (Templeton 1998). I

therefore published a solution to this problem (Templeton 2002)

before the publication of Knowles and Maddision (2002). How-

ever, I will first discuss a more recent solution that I have suggested

(Templeton 2008).

The unit of statistical analysis in NCPA is the nesting clade

and not the total haplotype tree. Hence, the nominal type I error

rate technically refers to a single nesting clade and not to all the

clades in a tree. When the nominal rate is set to 5%, the type I

error rate is 4% for nesting clades when validated from actual

data (Templeton 2004); that is, the type I error is at the expected

level for nesting clades. The problem of an inflated error rate is

therefore not at the level of nesting clades, but rather at the level of

analyzing an entire haplotype tree with multiple clades embedded

within it. One of the strengths of a nested design is that all of

the nested categories are independent under the null hypothesis of

no associations of haplotypes with geography (Templeton 2008).

Therefore, a tree-wise type I error rate of α is achieved when one

regards as significant only those tests within a nesting clade that

have a probability less than α′ where (Sokal and Rohlf 1995)

α′ = 1 − (1 − α)l/k (1)

and where k is the number of nesting clades analyzed with

GEODIS for a given haplotype tree. Beaumont and Panchal (2008)

feel that some correction is necessary for the multiple tests within

a nesting clade, and indeed I showed how that problem could also

be solved with another test correction (Templeton 2008). How-

ever, I did argue that this additional correction is not necessary

because each nesting clade yields only a single inference. Beau-

mont and Panchal (2008) dismissed equation (1) without actually

testing it with real data, so I do so here. Because the output of

GEODIS gives the exact probabilities for all test statistics, it is

easy to apply equation (1) retroactively. I did so with the datasets

used in the validation study (Templeton 2004), setting the nominal

level to 5%. With this test correction, the tree-wise type I error

rate in the validation study is 2.0%— a value not significantly

different from the nominal level of 5%. Hence, the problem of an

inflated type I error at the level of the haplotype tree is a solved

problem for single-locus NCPA.

One disadvantage of using equation (1) is that although it

decreases type I errors, it also increases type II errors. There-

fore, when I realized in 1998 that the tree-wise type I error rate

was too high, I devised an alternative correction that would make

use of multilocus data, as it was apparent to me that the future

of phylogeography was going to be with multilocus datasets. A

multilocus, cross-validation procedure was created that reduces

both type I and type II errors (Templeton 2002, 2004). Multilocus

NCPA has many optimal statistical properties that are discussed

elsewhere (Templeton 2009), so here I will give only one exam-

ple to illustrate its properties: the simulations of Knowles and

Maddison (2002). The 10 replicates that they simulated can be

regarded as 10 different loci in a single multilocus NCPA. This

example is actually a very difficult case. In these simulations each

local isolate had an inbreeding effective size of 10,000, and the

time between fragmentation events was 5000 generations, with

the total time of the entire simulated process being 10,000 gener-

ations. Given that the expected coalescence time within isolates

of inbreeding effective size 10,000 is 40,000 generations for an

autosomal gene or 20,000 for mtDNA (assuming the 10,000 is

the effective size of females), the parameter choices of Knowles

and Maddison (2002) ensure the retention of much ancestral poly-

morphism across isolates. Inferring temporally shallow fragmen-

tation events with extensive retention of ancestral polymorphisms

across isolates is difficult for any technique. Indeed, Knowles and

Maddison (2002) reported that their own phylogeographic tests

had “poor performance” with these simulated datasets.

The first step in multilocus NCPA is to retain only those in-

ferences that are cross-validated by two or more loci in type of

inference (disregarding such inferences as “inconclusive,” “inad-

equate sampling,” etc.). Table 1 gives all the inferences obtained

across all 10 “loci” when all the simulation and sampling as-

sumptions given by Knowles and Maddison (2002) are retained
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Table 2. The populations inferred to be isolates relative to one or more other populations for the 18 fragmentation events given in

Table 1. The geographically validated inferences are indicated in bold.

Single isolates Pairs acting as isolates Triplets acting as isolates

Population No. of inferences Populations No. of inferences Populations No. of inferences

(1, 2) 3
1 7 (1, 3) 1 (1, 2, 3) 1
2 6 (1, 4) 1 (1, 2, 4) 0
3 6 (2, 3) 1 (1, 3, 4) 1
4 6 (2, 4) 1 (2, 3, 4) 0

(3, 4) 3

without any alterations at all. The inferences in Table 1 that are

cross-validated by type are fragmentation, restricted gene flow,

and range expansion—all with two or more loci supporting these

types of inference. Second, one retains within each inference-

type category only those inferences that are geographically cross-

validated by two or more loci. For the two cases of range expansion

in Table 1, one is inferred from locus 6 in the simulation and in-

volves expansion from population 1 into sites 2 and 3. The second

range expansion event is inferred from locus 7 to be an expansion

from population 3 into sites 1 and 4. Hence, these two range ex-

pansion events are not geographically concordant and therefore

are excluded. The geographical concordance of the fragmentation

and gene flow events is more difficult to gauge because of the ex-

tensive retention of ancestral polymorphism in these simulations.

For fragmentation, one establishes geographical cross-validation

by tabulating how many inferred fragmentation events imply that

a single specific population is isolated from one or more of the

others, how many pairs of populations are inferred to behave as

a single isolate from one or more of the other populations, and

how many triplets of populations (the largest logical group in a

four-unit system) are inferred to be isolated from the remaining

population. These tabulations are given in Table 2 (note, the total

numbers are greater than 18 because not all of these categories

are mutually exclusive). As can be seen, the only geographically

cross-validated fragmentation inferences are that each of the four

Table 3. The populations inferred to have gene flow for the five restricted gene flow events given in Table 1. The geographically

validated inferences are indicated in bold.

Gene flow between pairs of populations Gene flow among three populations

Populations No. of inferences Populations No. of inferences

(1, 2) 3
(1, 3) 1 (1, 2, 3) 1
(1, 4) 1 (1, 2, 4) 1
(2, 3) 1 (1, 3, 4) 0
(2, 4) 1 (2, 3, 4) 0
(3, 4) 3

populations acts as an isolate, and the pairs (1, 2) and (3, 4)

have also acted as isolates. Table 3 gives a similar tabulation of

which populations were inferred to have been interconnected by

gene flow. Obviously, gene flow involves at least two popula-

tions, so single populations are impossible with this inference

type. Because all inferences are of restricted gene flow, all four

populations are also excluded. As can be seen from Table 3, there

are only two inferences of cross-validated gene flow; between

populations 1 and 2, and between populations 3 and 4.

Most actual datasets subjected to multilocus NCPA also have

outgroup data for each locus; e.g., humans (Templeton 2002,

2005, 2007), African elephants (Templeton 2009), and lizards

(Gifford and Larson 2008). (Note, Knowles [2008] incorrectly

claims that there is not a single multilocus NCPA with cross-

validation in the literature—but such papers have been in the

literature since 2002, with the first one being a full-length arti-

cle in Nature.) The use of outgroup data allows a formal test-

ing of temporal concordance for all inferences. Moreover, the

same maximum-likelihood framework developed for testing tem-

poral concordance allows the statistical strength of all cross-

validated inferences to be quantified and provides great flexi-

bility in testing a wide variety of other phylogeographic null

hypotheses (Templeton 2009). Unfortunately, no outgroup data

were simulated in this case, so the simulated data of Knowles

and Maddison (2002) cannot show the full strength of multilocus
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NCPA. However, even in the absence of outgroup data, some

temporal inferences are possible. Sometimes a single locus con-

tains two or more inferences of fragmentation in different nesting

clades. For example, locus 8 at the total cladogram level inferred

the (1, 2) isolate, and locus 8 at the clade 2–1 level inferred pop-

ulations 1 and 2 to be isolated from one another. Because the

inference of 1 and 2 being isolated from one another is nested

within the inference of (1, 2) being an isolate, the temporal polar-

ity of the fragmentation events had to have been (1, 2) fragmented

from (3, 4), followed later by 1 fragmented from 2. Similar nesting

patterns exist at other loci (e.g., locus 0) that show that the (1, 2)

versus (3, 4) fragmentation event is older than the 3 versus 4 frag-

mentation event. Similarly, for the restricted gene flow inferences,

the gene flow between 1 and 2 is indicated by one locus at the

total cladogram level, and for the other two loci at the three-step

level. Gene flow between populations 3 and 4 is indicated at the

total cladogram level for two loci, and only for one locus at the

two-step level. These high-order nesting associations imply that

these gene flow events are old ones.

All these cross-validated inferences can be placed into a

single phylogeographic history: the population pair (1, 2) was

fragmented from the population pair (3, 4); followed by a period

of time in which gene flow was restricted to be between 1 and 2

and between 3 and 4 but not between (1, 2) and (3, 4); followed

by the fragmentation of 1 from 2 and the fragmentation of 3 from

4. This is a 100% accurate reconstruction of the events simulated

by Knowles and Maddison (2002): there are no type I errors

and no type II errors in this multilocus NCPA of simulated data.

Hence, even though this is an information-poor simulated dataset

compared to those found in real multilocus datasets, multilocus

NCPA could not have performed better.

The Answer
Knowles asks “why does a method that fails continue to be used?”

and “how long will a field cling to an ideal rather than requiring

objective critical validation?” My answer to these questions is

that NCPA has not been shown to fail. To the contrary, NCPA

has been subjected to extensive, objective critical validation both

through the analysis of actual datasets in a manner that satisfies

the requirements for legitimacy as stated by Knowles (2008) and

by the very same computer simulations of Knowles and Maddison

(2002) that Knowles (2008) cites as an argument against NCPA.

Her argument that these simulations undermine NCPA is based

on using a version of NCPA that has not been used for over

5 years; yet she applies this outdated analysis to current use.

The problem of inflated type I errors was first recognized in

1998 (Templeton 1998) and was solved by the development of

multilocus cross-validation before the publication of any of the

critiques of type I error in NCPA. The critics of NCPA have

steadfastly chosen to focus only on the pre-2002 version of NCPA

and have never addressed the current, multilocus version. The

critics of NCPA also make many claims against NCPA, but do not

test these claims with real data. When their claims are tested, they

are consistently and strongly falsified. Finally, multilocus NCPA

has been shown to have many optimal statistical properties and

provides a robust framework for testing null, phylogeographic

hypotheses (Templeton 2009). Hence, I continue to use NCPA

precisely because I have demanded and produced objective critical

validations in a manner that fully satisfy the published criteria for

legitimacy given by Knowles (2008) and Knowles and Maddison

(2002).
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