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Phylogenies reveal new interpretation of speciation
and the Red Queen
Chris Venditti1, Andrew Meade1 & Mark Pagel1,2

The Red Queen1 describes a view of nature in which species con-
tinually evolve but do not become better adapted. It is one of the
more distinctive metaphors of evolutionary biology, but no test of
its claim that speciation occurs at a constant rate2 has ever been
made against competing models that can predict virtually identical
outcomes, nor has any mechanism been proposed that could cause
the constant-rate phenomenon. Here we use 101 phylogenies of
animal, plant and fungal taxa to test the constant-rate claim
against four competing models. Phylogenetic branch lengths
record the amount of time or evolutionary change between suc-
cessive events of speciation. The models predict the distribution of
these lengths by specifying how factors combine to bring about
speciation, or by describing how rates of speciation vary through-
out a tree. We find that the hypotheses that speciation follows the
accumulation of many small events that act either multiplicatively
or additively found support in 8% and none of the trees, respec-
tively. A further 8% of trees hinted that the probability of spe-
ciation changes according to the amount of divergence from the
ancestral species, and 6% suggested speciation rates vary among
taxa. By comparison, 78% of the trees fit the simplest model in
which new species emerge from single events, each rare but indi-
vidually sufficient to cause speciation. This model predicts a con-
stant rate of speciation, and provides a new interpretation of the
Red Queen: the metaphor of species losing a race against a deteri-
orating environment is replaced by a view linking speciation to
rare stochastic events that cause reproductive isolation. Attempts
to understand species-radiations3 or why some groups have more
or fewer species should look to the size of the catalogue of potential
causes of speciation shared by a group of closely related organisms
rather than to how those causes combine.

Van Valen’s original observations in support of the Red Queen were
of the length of time a species persisted in the fossil record1, and yielded
the claim that individual species went extinct at a constant rate through
time—longer lived species do not become better adapted. Van Valen
suggested that extinction occurs when species lose a battle against a
biotic environment that is constantly changing. Subsequent work
showed that this model predicts not only a constant rate of extinction,
but also a constant rate of speciation and evolution in a homogeneous
group2,4. Van Valen did not test the constant-rate model against com-
peting models, and apart from a suggestion that in some micro-fossil
groups the probability of speciation decreases with age while the
probability of extinction increases5, nor have those who followed
him. A burst of studies beginning in the 1990s, that estimated spe-
ciation and extinction rates from phylogenies6, derived their expecta-
tions from the constant-rate model that underlies Red Queen
predictions7.

In addition to being used to study rates of speciation and extinc-
tion, the lengths of the branches of phylogenetic trees can reveal how
the various factors that bring about speciation combine to do so, but

we are not aware of any studies that have used phylogenies for this
purpose. We studied the frequency distributions of these branch
lengths in 101 phylogenies inferred from gene-sequence data, and
selected for including a well-characterized and narrow taxonomic
range of species. This reduces background differences in life histories,
morphology and ecology that might affect rates of speciation. Our
data sets include bumblebees, cats, turtles and roses (Supplementary
Information). For each of the gene-sequence alignments, we inferred
a Bayesian posterior probability sample of 750 phylogenetic trees
using our phylogenetic mixture model8 (Supplementary Infor-
mation). We used uniform (0–10) priors on branch lengths to avoid
biasing towards short or long branches, although exponential priors
gave the same results. The mixture model improves on conventional
single-rate-matrix models and on partitioned models, more accurately
recovers branch lengths and reduces artefacts of phylogeny reconstruc-
tion8,9. Accurate reconstruction of branch lengths is crucial, as, for
example, systematically underestimating the true lengths of long
branches would bias the branch-length distribution away from long-
tailed distributions. We excluded any data sets in which the inferred
trees suffered from node-density artefacts10,11.

We characterized the frequency distributions of the phylogenetic
branches using statistical models that make differing assumptions
about the expected amount of divergence or waiting times between
successive speciation events. We suppose there are many potential
causes of speciation, including environmental and behavioural
changes, purely physical factors such as the uplifting of a mountain
range that divides two populations, or genetic and genomic changes.
If many independent factors combine additively to produce a spe-
ciation event, the distribution of branch lengths will conform to a
normal probability density; if they combine multiplicatively, a log-
normal density of lengths will arise. Suppose the factors are rare but
large in number, where ‘rare’ means occurring at a rate less than the
rate of speciation. Then their distribution over long periods spanning
many speciation events will follow a Poisson density12. If these factors
have the potential on their own to cause a speciation, the branch
length distribution will follow an exponential density12, that being
the waiting time between successive events of a Poisson process. This
is also the density that arises if there is a constant probability of
speciation. A variant of the exponential model allows the multiple rare
factors to affect species differently such that they have different con-
stant rates13 (hereafter the variable-rates model), as might be expected
of a species radiation3. Another variation of the exponential—the
Weibull density—can accommodate the probability of speciation
changing according to the amount of divergence from the ancestral
species. This model will fit the data if, for example, species are either
more or less likely to speciate the older they get.

Table 1 (see also Supplementary Information) shows that with the
exception of the normal, these statistical models can produce almost
indistinguishable densities, but imply different modes of causation. For
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example, the Weibull density simplifies to the exponential density as a
special case when a 5 1 and b 5 1 (see Table 1 for definitions of these
parameters). The variable-rates model is the convolution of multiple
exponentials whose individual rates are assumed to follow a gamma
probability distribution—in this model a and b describe the shape and
scale, respectively13. If this gamma distribution is very narrow (small
b), then the variable-rates model converges on an exponential.

For each posterior sample of 750 trees we normalized the branch
lengths in each tree to be 1.0 (this does not affect the shape of the
distribution), then studied the probability distribution of branch
lengths by comparing the fits of the five models in Table 1. The length
of each internal branch in a phylogeny records the expected amount
of genetic divergence per site inferred to have occurred between two
adjacent nodes of the tree, corresponding to events of inferred spe-
ciation minus any species missing from the tree owing to extinction
or sampling11. We excluded the terminal branches because they do
not record speciation events and so are not suitable for characterizing
waiting intervals. We used genetic branch lengths in preference to
branch lengths scaled to time because all temporal-scaling methods
introduce uncertain nonlinear transformations (see Supplementary
Information). Our preference is equivalent to assuming that any
departures from a molecular clock in our data sets are random with
respect to the underlying branch lengths.

Figure 1a reports the percentage of the data sets in which each of the
five models provided the best overall description of the branch-length
distributions. Each model’s fit was evaluated using a reversible-jump

Markov chain Monte Carlo (MCMC) criterion and by harmonic
means (see Fig. 1 legend and Supplementary Information). For the
reversible-jump approach this is the model with the highest posterior
proportion in a data set and for the harmonic mean method we take
the model with the largest score. The two methods are in close agree-
ment. The reversible-jump method finds the exponential model pro-
vides the best fit in 78 6 4.1% of the data sets, followed by the Weibull
at 8 6 2.7%, the lognormal at 8 6 2.7% and the variable-rates model
at 6 6 2.4%. The normal distribution never provided the best fit.
Despite fitting fewer parameters, only the exponential model’s per-
formance exceeds the prior expectation of fitting at least 20% of the
trees. The harmonic mean approach returned similar results for the
exponential (80 6 4.0%) but gave more support to the variable-rates
model (14 6 3.4%), in preference to the lognormal (1 6 1.2%), fol-
lowed by the Weibull in 6 6 2.4%, and again the normal distribution
did not fit any of the data sets best. The lognormal’s poorer perfor-
mance under the harmonic mean largely reflects the disproportionate
effects of a few trees in each of a handful of posterior samples that it
fitted badly: the harmonic mean is known to be sensitive to extreme
values and as such can be unstable14,15. For this reason we favour the
reversible-jump approach and refer to its results for the remainder of
the analyses, although none of the tests reported below differs quali-
tatively when the harmonic mean values are used.

Table 1 | Five biologically interpretable probability models of the distri-
bution of branch lengths on a phylogeny

Model Parameters PDF

Exponential

p xð Þ~ 1

b
e{x=b

b 5 scale

Weibull

p xð Þ~ a

b
xa{1e{ x=bð Þa

a 5 shape; b 5 scale:
when a5 1, Weibull

5 exponential

Lognormal

p xð Þ~ 1

xs
ffiffiffiffiffiffi

2p
p e{ ln x{m½ �2=2s2

m 5 mean of ln x;
s2 5 variance

Variable rates

p xð Þ~ ab

1zbxð Þ1za

a 5 shape; b 5 scale
(of the gamma distri-
bution of the rates)

Normal

p xð Þ~ 1

s
ffiffiffiffiffiffi

2p
p e{ x{mð Þ=s½ �2=2

m 5 mean;

s
2

5 variance

Scale parameters control the mean, shape parameters describe skew and mode. Four of the five
models can produce similar shapes but have different biological interpretations (see text).
Different coloured distributions correspond to different parameter values in each model.
Colours distinguish shapes but do not correspond across models to equivalent parameter
combinations. Models and parameters are further described in Supplementary Information.
PDF, probability density function.
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Figure 1 | Performance of the five models. We fitted the statistical models in
two ways. In one, we implemented a Bayesian reversible-jump27 Markov
chain that moved among the five statistical models estimating their
parameters while simultaneously jumping among trees in the posterior
sample (Supplementary Information). Allowed to run for many iterations,
the proportion of time the chain spends in each model measures its posterior
probability of describing those data. In the second method, we fitted each
model separately in its own Markov chain that estimated the parameters of
the statistical model while moving among trees, recording the harmonic mean
of the likelihoods (based on samples from chains that were run for
1.875 3 109 iterations) as an estimate of each model’s marginal density27. In
both approaches, we used Bayesian prior distributions chosen to favour the
four two-parameter models over the one-parameter exponential
(Supplementary Information). a, Percentage of data sets for which each
model provided the best overall description of the branch-length distribution
(models described in text). The coloured bars are the results from the
reversible-jump procedure (see text), the grey bars record the results from the
harmonic mean test. Error bars, standard error. b, The distribution of each
model’s finishing places (first to fifth) across the 101 data sets.
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The two models that can most closely mimic the exponential—the
Weibull and the variable-rates model—regularly come in second and
third when each model’s distribution of finishing places across the
101 data sets is recorded (Fig. 1b). These show that even though the
lognormal model was in joint second place for the number of best fits,
it does not in general provide a competitive description of the data,
suggesting that the data sets it does fit best are unusual. When the
Weibull scaling parameter equals 1 (see Table 1), this distribution
simplifies to the exponential. For the n 5 22 data sets in which the
exponential was not the best fitting model, the Weibull scaling para-
meter is close to 1 (1.09 6 0.25), indicating that there is no trend in
those data sets either for longer-lived species to have a lower rate of
speciation (a . 1) or for short-lived species to have a higher rate
(a , 1).

We find no relationship between the size of the tree and the degree of
posterior support for the exponential model (r2 5 0.03, P 5 0.5327).
Neither did we find any association between Colless’ index, Ic, of tree
imbalance16 and the degree of posterior support for the exponential
model (r2 5 0.006, P 5 0.4368), suggesting that the popular Yule pro-
cess17 may not in general explain the shape and branch-length distribu-
tions in real trees. The posterior probability of a sample of trees being
fitted best by the exponential model is not different in the subset of our
data sets that sample greater than 50% of the extant clade (F 5 1.1713,
P 5 0.3143). Similarly, there was no significant difference between the
trees that span different taxonomic ranges; within genus, within family
or within order (F 5 1.7642, P 5 0.1767), or between kingdom (plants,
animals or fungi; F 5 0.8142, P 5 0.4464).

The observed cumulative density distributions of the branch
lengths for trees best fitted by the exponential, the lognormal and
the variable-rates models, respectively, are shown in Fig. 2a, b and c,
along with the exact cumulative density of the statistical model that
provides the best fit to those data. These show that data sets do differ
in which model fits them best, and that simple models are able to
characterize the branch-length distributions with precision. The

steep rise in Fig. 2c is consistent with the suggestion that in some
instances, rates of speciation are high initially and then taper off3, but
as we find this pattern in just 6% of the trees, it does not appear to be a
general phenomenon in the growth of a phylogeny. Figure 2d plots
the cumulative exponential density function, and the average of the
cumulative densities for the 79 data sets best fitted by the exponential
model, and separately for the 22 data sets fitted best by the other
models. The data sets that are best described by the exponential
provide a remarkably close fit to the true exponential density, show-
ing that the simplest model of speciation describes the individual
speciation rates of closely related species over millions of years.

Deviations from the molecular clock might be expected to produce
excesses of very short or very long branches—corresponding to the
clock speeding up or slowing down. We think that such deviations are
unlikely, because the narrow taxonomic range of our species means
they share life-history and metabolic factors that might influence the
rate of evolution18. But even if they did occur they would tend to
favour models other than the exponential, such as the variable rates.
Missing species and extinctions could influence our results if not
randomly distributed in the tree, but neither of these would bias the
results towards the exponential model (Supplementary Information).
We note that exponentially distributed branches in phylogenies pro-
vide support for the widespread use of exponential priors on branch
lengths in MCMC models of phylogenetic inference.

Our results stringently test the idea that speciation occurs at a
constant rate, and suggest a general mechanism by which shared rates
of speciation will arise among independently evolving taxa. We derive
the Red Queen prediction from a simple model that supposes that the
causes of speciation are many and rare, not necessarily limited to
biotic interactions, and each individually having the potential to cause
a speciation event. It has been shown12,19 in a different context that if
these assumptions hold, an exponential distribution of divergences is
expected between—in our case—successive bouts of speciation
(Fig. 3). If the original Red Queen model had a ‘whiff’ of a species
running out of breath from the accumulation of many detrimental
biotic effects, and then being ‘knocked off’ by the next event, the
interpretation we propose is different. Species do not so much ‘run
in place’ as simply wait for the next sufficient cause of speciation to
occur. Speciation is freed from the gradual tug of natural selection,
there need not be an ‘arms race’ between the species and its environ-
ment, nor even any biotic effects. To the extent that this view is correct,
the gradual genetic and other changes that normally accompany spe-
ciation20 may often be consequential to the event that promotes the
reproductive isolation, rather than causal themselves. Factors apart
from biotic interactions that can cause speciation include poly-
ploidy21, altered sex determination mechanisms22, chromosomal re-
arrangements23, accumulation of genetic incompatibilities24, sensory
drive25, hybridization26 and the many physical factors included in the
metaphor of mountain range uplift.
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Figure 2 | Cumulative density distributions of branch lengths. Each panel
plots the proportion of observed branch lengths expected to fall at or below a
point on the x axis if the model is true. Coloured curves are the statistical
cumulative distribution functions (CDFs). a, Cumulative density of branch
lengths for a phylogeny of pit vipers28 taken from the posterior sample
(black) and the predicted exponential CDF (red); b, cumulative density of
branch lengths for a phylogeny taken from the posterior sample of
bumblebees29 (black) and the predicted lognormal CDF (blue); c, cumulative
density of branch lengths for a phylogeny taken from the posterior sample of
Symplocos (a genus of flowering plants)30 (black) and the expected variable-
rates CDF (green). d, This plot compares the observed proportions for: (1)
data sets that were best described by the exponential model (black) and (2)
data sets best fitted by other models (yellow). The red line shows the
predicted exponential density (this line is mostly masked by the black line).
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Figure 3 | Single rare-events model. We suppose there are many rare
factors (n) each individually having the potential to cause a speciation event
per se (red points indicate a speciation event). If the events are sufficiently
rare and large in number (rare being defined as much less than the rate of
speciation), the superposition of these events (bold blue horizontal line with
red points) gives rise to a Poisson process over many speciation events, with
the waiting time between successive events of the Poisson being
exponentially distributed. The speciation events (red points) shown on the
superposition line that do not connect to a red point above are presumed to
be among the ‘n27’ causes not shown (illustration drawn after ref. 12).
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This way of thinking about speciation also has implications for
attempts to understand why some groups have so many more or
fewer species than others. If speciation is driven by rare stochastic
events, then it will be the number of different such events that sets the
rate of speciation. This means that researchers seeking to develop
explanatory theories of speciation should focus their attention on
the size of the catalogue of sufficient causes (speciation factors)
shared by a group of organisms, rather than on special driving forces
or how these forces might combine.
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